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Abstract—Based on a quantum statistical many-particle theory, the shift and the width of some
Hell lines have been evaluated. Ion dynamics have been treated within the model microfield
method. Furthermore, fine structure splitting has been taken into account in order to check
whether this effect is the cause for the existing large discrepancies between theoretical and
experimental line widths. Besides the electronic contributions to the line shift, the shift due to
the inhomogeneities of the ionic microfield as well as that due to the quadratic Stark effect has
been included. © 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

One of the most important tools for plasma diagnostics is the shape of the emitted spectral lines.
Whereas for plasmas of moderate densities and temperatures hydrogen spectral lines play an
important role for plasma diagnostics, in hot and dense plasmas most of the radiators are highly
ionized. Therefore, for such plasma conditions which can be found, for example, in laser produced or
astrophysical plasmas, the knowledge of the line shapes of highly ionized or even hydrogenic ions
allows to determine the electron density or the temperature.

Up to now, there are large discrepancies between theoretical and experimental results. It has been
supposed that the reasons for these discrepancies are experimental uncertainties® or the neglect of
fine structure splitting by the theories.! During the last few years precise measurements of spectral
line profiles of some Hell lines have been carried out. That is why, the aim of this paper is to
calculate the line widths for these experimental plasma parameters. Thereby, fine structure splitting
will be included in order to investigate whether the agreement between theoretical and experimental
results can be improved this way. Furthermore, the line shift will be evaluated. In difference to
former theories it will be determined from a complete shifted and asymmetric line profile.

The starting point of our theoretical investigations is a Green’s function approach to spectral line
shapes which has been developed for the case of neutral radiators.?® Starting from the relationship
between the complex refraction index and the dielectric function, a many-particle approach to the
optical properties of dense plasmas has been developed. Thereby, not only the radiators but also the
perturbers have been treated quantum mechanically. Avoiding a no-quenching approximation,
besides the line width also its shift has been calculated. Taking into account further the interaction
between the radiator and the inhomogeneities of the ionic microfield as well as the quadratic Stark
effect, the ionic contributions to the shift of the line and to its asymmetry have been included. Ion
dynamics have been treated via the well-known model microfield method.” !

In order to deal with charged radiators, the theoretical approach has to be modified in some
points. Besides changes in the wave functions and energy values, the interaction between the radiator
and the perturbers has to be reconsidered. This will be done for the electronic as well as for the ionic
contributions to the line profile.

§ To whom all the correspondence should be addressed.
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Ton dynamics will be included via the well-known model microfield method (MMM). For that
reason a field-field autocorrelation function for charged radiators will be calculated in order to
determine the corresponding jumping frequency.

Dealing with the shift of spectral lines caused by the plasma ions, a generalized mean field gradient
B,(B) has been introduced by one of the authors.'! This treatment of the ionic contributions to shift
and asymmetry has been proved already to be successful for hydrogen lines.!*:2 It will be modified
here for the case of charged radiators.

2. THEORY

Based on a Green’s function technique, a quantum mechanical many-particle approach to
spectral line profiles has been developed.® ¢ It has been shown that the shape of spectral lines is
given by the two-particle contributions to the corresponding polarization function. Therefore, the
line profile emitted by a radiator that moves with the momentum P is given by

o 2
H8o)~ ¥ 1 (o) exp [— ST ](inI (U111 (1
with
Pk Kk . .
U(Aw)=Aw—H—m—Re{Ei—Zf}+1Im{2i+2‘.f}+1r"’. )

M denotes here the radiator’s mass, kg is the Boltzmann constant, T the temperature of the heavy
plasma particles, and k the wave number of the emitted radiation. The sum has to be carried out over
all transitions which contribute to the spectral line. The intensity

L (Aw) = MP(R) [M.()]* [(Aw) ©)

besides the transition matrix elements contains the frequency dependence of the dipole radiation and
that resulting from the Boltzmann occupation of the radiator’s states. It is responsible for the
so-called “trivial asymmetry”.

The influence of the surrounding plasma on the radiator is contained in the self energy . The real
part of the self energy corresponds to the shift of the concerning energy level, whereas its imaginary
part gives the width. The line shift follows from the difference of the shifts of the upper and the lower
energy level. The line width, however, results from the sum of the corresponding level widths. The
vertex term I'ly describes the coupling of the upper and the lower energy state. In principle, it
represents the interference contribution to the quantum-mechanical summation of the widths of
both energy states.

For the plasma conditions which are of interest here, it is possible to decouple the ionic and the
electronic subsystems of the plasma. Assuming a static ionic microfield E, one finds for the self
energy

T = TYE) + Z(E, Aw). 4)

Whereas the ionic part of the self energy describes the influence of the static ionic microfield on the
radiator, the electronic contribution depends on both, the ionic microfield and the detuning Aw from
the line center. The aim of this paper is to give the electronic as well as the ionic contributions to the
self energy for a charged radiator. Considering spectral lines of hydrogenic ions, it is well known that
their width is considerably smaller than that of the corresponding neutral radiators. That is why, one
has to account for ion dynamics as well as for fine structure splitting. Ion dynamics will be taken into
account here within the model microfield method.”*® Applying the often used Kangaroo-process,
instead of Eq. (2) one finds

CU(Aw)dxe = CUADIE))s + (QUE) U(A®|E))s[(QE))s

— (QYE) U(A|E))s] ™ '<QE) U(A®IE))s. (5)
The time development operator for a constant ionic microfield strength U(Aw|E) is given by
Pk Kk . . -
U(A0|E) = Aw — 5 — 55 — Re{Z; — Zf} +iUE) + iIm{Z; + £;} +i™ 6)
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The average < ...)s has to be carried out applying the corresponding microfield distribution function

W(E)
(...>s=jdEW,,(E).... 0]

For the case of neutral radiators, the jumping frequency (XE) has been determined from the
field-field autocorrelation function

__4nne® | 2m 2 PR A
L) =— —— [1 +1%— ﬁr(z + E)e erfC(f)jl, ®)
with

wp]t
T =, 9
V; )

A

erfc(x) = ——\/_J e “de (10)

Tdx

derived in Ref. 7. (w, denotes the electron plasma frequency.)

For charged radiators, however, the divergence at t = 0 should not appear. This problem has been
dealt with for example in Refs. 2 and 13.

In this paper, we calculate the field-field autocorrelation function at a charged point:

I'(2) = {E(r(t = ) E(r(1)))
-7 fd'fd”f ® [ = Vo)l - Vo) g:0)

Where g(r) denotes the pair correlation function we will consider weakly coupled plasmas, ie.
the coupling parameter I' « 1. Therefore we employ the Debye—Hiickel limit of the pair correlation
function g,(r) and the pair potential ¢(r) in order to include the screening of the microfields as well as
pair correlations, see Ref. 14

p—a

Zoe(p(r)) 1 Ze _,,

kBT ( = 47!80 _;'—

Z, is the charge of the radiator, Z that of the ionic perturbers, and « is the screening parameter.
Assuming straight path trajectories (r(t) = |r — vt]) for the passing ions, the formula for the autocor-
relation function
kyT
It =~ fdvf(u)fdrgl(r)Aw(r(r»
1]

can be simplified to a single integral over r.

Thus, the resulting field correlation function is finite at ¢ = O:

kBTn,- VA
€o ZO’

Tt=0)= (11)
and is in very good agreement with the results of Stehle? who assumed hyperbolic trajectories

(Fig. 1).
The equation for ()

1 Q c+ico E
—-_[ dsj dtI“(t)e“:j F*W(F)dF

27ti 0 c—iw 0

has been solved using a parameterization for I'(f) which is accurate at least to 3%. However, the

difference in the line width between using a charged point or neutral point MMM is negligible.
Further, including Doppler broadening in Eq. (1), the average over the velocities of the radiators

has to be carried out applying the Maxwell distribution function. Fine structure splitting will be
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Fig. 1. Field-field autocorrelation function I'(f) at n, = 10'cm ™3 and T =40000K for hydrogen
perturbers at a singly charged point (He™).

accounted for by using the Pauli wave functions

= 1 R ( SI+Fm+172Y,,_ 1,00, 9) ) (12)
o J2A+1 —JI—m+1/2 Y1200, §)
o = 1 («/l —m+ 1/2Y _1,2(6, ¢)> (13)
- ,/21+ SI+m+172Y 141,200, @)

as the wave functions in Eq. (1). The corresponding unperturbed eigenvalues are given by

Z\N2 L (Z\*( n 3
e=-(Z) () (%1 -3) 9

where the quantum number j may take values between 4 and n — 3, n is the principal quantum
number. Including the fine structure splitting, it is more complicate to carry out the average over the
angles in Eq. (5) according to Eq. (7) compared to those evaluations given in the appendix of Ref. 11
where the usual spherical wave functions are applied
Now, in principle, all the necessary formulae for the line profile are given. Only the concrete
expressions for the electronic and the ionic self energy remain to evaluate. This will be done in the
following two sections.

3. ELECTRONIC CONTRIBUTIONS TO THE SELF ENERGY

As it has been evaluated already for neutral radiators, the self energy within a second order Born
approximation with respect to the perturber-radiator interaction is given by

d o«
GIZ(E? + Ao, B)li> = f Gy VOZIME @ J

dw
— [1 + np(w)]
e T
Ime™ (g, w +10)
0 . (15)
E} + Aw — E(f) — (w +10)
This self energy depends on both the strength of the ionic microfield # and the detuning Aw from the

line center. The transition momentum g corresponds within a semiclassical picture, in principle, to
an inverse impact parameter. ng(w) is the Bose function

1
() = exp( — w/kgT) — 1~

(16)
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In principle, the a-sum has to be carried out over all bound and scattering states of the radiator. We
restrict ourselves here to those states with principal quantum numbers n, with

ni—-ISnGSni+2,

where n; is the principal quantum number of the considered state. Many particle effects are
contained in the inverse dielectric function ¢~ ' which has been taken within the random-phase

approximation. However, they do not play an important role for the plasma parameters considered
here.

The matrix elements M’ are given b
g y

MDig) = L;;;s (¥ (P)T* [Zoe Wi (p) — e ¥ (P + )], (17)
where W¢ are the radiator’s wave functions.
For the matrix elements we use an expansion into spherical harmonics

© 1
e =dny, Y {jgr)YE(Q)Yim(Q) (18)
=0 m=-1{

which corresponds to a quantum mechanical treatment of the perturbing electron. Here, we consider
contributions up to ! = 2 only. Calculating the width and the shift of the radiator’s energy levels, one
finds that the monopole-like [ = 0 terms give the main contributions. These terms, however, one
cannot find for the width and the shift of spectral lines since they are of the same magnitude for the
upper and the lower energy level. Besides the ] = 1 terms, contrary to the case of neutral radiators,
also the quadrupole-like ! =2 terms become of importance. Therefore, the often used dipole-
approximation should not be applied for the case of charged radiators.

If one would apply a second order Born approximation as in Eq. (15), however, the electronic
contributions to width and shift of spectral lines would be overestimated. Therefore, strong collision
contributions to shift and width have been treated systematically by a partial summation of the
corresponding three-particle T-matrix as it has been done for hydrogen lines in Ref. 6.

Furthermore, of course, the corresponding wave functions and energy values in Eq. (15) change for
charged radiators. Thus, the electronic contributions to the line width become much smaller than
those for neutral radiators. The electronic width depends as Z~? on the radiator’s charge. Therefore,
besides ion dynamics also the fine structure splitting may become important. For highly charged
radiators, the same is true for the natural line width which grows as Z* with the charge of the
radiator.

4. IONIC CONTRIBUTIONS TO THE SELF ENERGY

In order to calculate the line profiles according to Eq. (5), the time development operator for
a constant ionic microfield strength has to be determined. In the static ion approximation, the
Hamiltonian of a hydrogenic radiator including inhomogeneities of the ionic field as well as
electron-ion and ion—ion interaction is given by

5 eOEo

H(B) = Ho + eoEofz ~ B 3R,

B,(8)(3z* —r?), (19)
where H, is the Hamiltonian of the isolated emitter, § = E/E, denotes normalized and E, = ¢o/Rj
the normal Holtsmark field strength. R, is the mean distance defined by

4
I (2n)**R3n, = 1. (20)

The function B,(f) includes the screening of the ionic microfield by the plasma electrons and has,
therefore, to be considered as a generalization of the function B(f) which has been introduced by
Chandrasekhar and von Neumann.!® In principle, it can be considered as a mean gradient of the
microfield at a given field strength. This function depends on the screening parameter p = Ro/D,
where D is the electronic Debye length.
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In Eq. (19) a coordinate system with E || E, has been chosen. From this Hamiltonian one finds the
following contributions to the ionic self energy:
Besides the linear Stark effect

i(B) =3n'(ny — n3) BE, @1
the quadratic Stark effect has been approximately accounted for by using
2(B) = — Te (W) (17(n)* — 3(n} — nb)* — 9(m’)* + 19)BE3. 22)

Furthermore, the interaction between the radiator and the inhomogeneities of the ionic microfield
has to be taken into account. The corresponding contributions due to the quadrupole interaction
between the radiator and the ionic microfield are given by

T . — — ] . ni=n{ —1

3 e ndnY /i — ) (o + D (0 —n — DBJB: e
BB ={ 3 adendn(n) — 1 — 6(ns — nb))B (B i=i (23)

T ; i ; ; P i ny=nj+1

5 aden )2/l + D0 — nf — Db — nb)B,By: . ..

3 n2 = nz - 1

In the Egs. (18}«23) parabolic quantum numbers with

n=n;+n,+|m+1 (24)

according to Ref. 16 have been applied.

The function B,(f) which determines the ion-quadrupole contribution to the ionic self energy has
been given for a neutral radiator in Ref. 11.

Here, this function has been calculated at a singly charged point (Z, = 1) for single (Z, = 1) and
double (Z, = 2) charged perturbers. The difference to the neutral radiator is here again the
additional ion-ion interaction which has been described by the one body correlation function g,.
The essential expressions are given in the Appendix A. In Fig. 2, the relation between B,(f) and the
ordinary function By(f)) is given as a function of the reduced field strength f§ for several values of the
screening parameter p at a charged point for double charged perturbers. The corresponding ratio for
singly charged perturbers is the same as it has been given in Fig. 2 of Ref. 11.

CHARGED POINT Z,=2

B, (B/B,(B)
N

B

Fig. 2. Ratio of the field gradient functions B,(f) to that of the Holtsmark-case (see text).
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Fig. 4. Influence of various effects on the line profile of H, at an electron density of 5.5 x 1022 m~2 and
a temperature of T = 44000 K.

In Ref. 17 the function

has been introduced. Its generalisation within the Baranger/Mozer formalism has been given by one
of the authors.'! Whereas the dipole interaction between the radiator and the ionic microfield leads

to terms proportional to 8 [see Eq. (19)], from the quadrupole interaction follow terms proportional
to B,(f). Therefore, the mean value

(25)

A =L°° B’;ﬁ”) W,(8)dp 26)
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is a measure of the importance of the quadrupole interaction compared to the dipole term. It
becomes obvious from Fig. 3 that the relative importance of the ion-quadrupole terms decreases
with an increasing degree of the plasma ionization.

5. RESULTS

With the theory outlined in the previous sections, the profiles of some Hell lines have been
caiculated. In Fig. 4 the influence of various effects on the line profile such as fine structure splitting,
ion dynamics and Doppler broadening are investigated. Analogous to the corresponding experiment
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Fig. 5 (a) Width of the H,-line compared to several experimental and theoretical results. The results of
Greene and Oza have been taken from Refs. 19, 21 resp. and include ion dynamics whereas the values of
Kepple?? are for static ions. The experiments stem from Musielok et al?® and Boddeker and Kunze.?*
(b) Same as (a), but the effects of fine structure and ion dynamics over a wide range of densities are shown.
Density and temperature of the calculated results correspond to those of the experimental data.
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by Piel and Slupek’, an electron density of 5.5 x 10%>m ™2 and a temperature of 44 000K have been
chosen. As it has been already outlined in Ref. 1, there is a large discrepancy between the
experimental and the theoretical line width assuming a static ionic microfield and neglecting further
fine structure splitting as well as Doppler broadening. Taking into account the Doppler broadening
only, the half width already increases considerably. The same effect can be found including only the
fine structure splitting. Considering simultaneously the fine structure splitting, the effects due to ion
dynamics and the Doppler broadening, one reaches a much better agreement between experimental
and theoretical results.

There are a lot of experimental results for the width of the H, line of HeIl. As can be seen in
Fig. 5(a), the various experimental results differ clearly. Therefore, it is not possible to make
statements about the quality of the various theories. Considering the experimental results for the half
width of the H, line which has been given recently by Griitzmacher and Johannsen'® [Fig. 5(b)], one
finds that the density dependence of the half width agrees, at least qualitatively, with the theory.
Despite of the inclusion of the fine structure splitting as well as ion dynamics, however, the
theoretical half width remains too small compared to the experiment. This is presumably caused by
the well-known underestimation of the ion dynamical effects within the applied model microfield
method. The same is true for the half width of the P, -line (Fig. 6). Our theoretical line width agree
very well with that given by Greene [19] who used a relaxation theory in order to describe ion
dynamical effects.

In the Figs. 7 and 8§, the shift of the H, and the P, lines are compared to experimental results. It
becomes obvious that the shift of the P, line agrees excellently with the measured one, whereas the
theoretical shift of the H, line is much smaller than the corresponding experimental result. We do
not know the reasons for this discrepancy. In theoretical evaluations as described in this paper, the
relation between the shifts of H, and P, is given by the corresponding transition matrix elements. As
it has to be expected, the relation between both shifts at a given electron density calculated by this
paper is nearly the same as given by Griem. Obviously, within common theories it is impossible to
reach a good agreement between experimental and theoretical shifts for both lines at the same time.
Possibly, ion dynamical effects to the line shift which have not been included here are large enough
to result in a remarkably red shift of the H, line so that this discrepancy can be removed.

10.0 S —— I

10

FWHM [nm]

e Greene (1976)

|&—@ Stehle {1994) (hydrogen pert.)

- Griem and Shen (1961)

=== Kepple and Griem (1968) 1
dynamic ions (neon pert.)

-\ static ions
dynamic ions (hydrogen pert.)
~L] static ions
A Gritzmacher and Johannsen (1994)
Glenzer and Kunze (1984)
L. - — - — ke
0. 11 023 102t 1025

electron density n, [m™]

Fig. 6. Width of the P,line compared to several experimental and theoretical results: In Ref. 2 ion

dynamics have been included applying the model microfield method. The results of Greene®* are static ion

results as well as those of Griem and Shen?® and Kepple and Griem.2” In Refs. 26, 27 the upper-lower
interference terms are neglected.
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Fig. 7. Shift of the maximum of the H,-line. The comparison has been made to theoretical results of
Griem?® and experimental values of Griitzmacher and Johannsen.!®
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Fig. 8. Shift of the maximum of the P,-line. The comparison has been made to Refs. 18, 28.

6. CONCLUSIONS

The many-particle approach to spectral line shapes developed for neutral radiators has been
generalized to charged radiators. Within this approach, the perturbing electrons have been treated
quantum-mechanically. Further, strong collision contributions have been included systematically by
a partial summation of the corresponding three-particle T-matrix. Thus, no arbitrary parameters are
necessary calculating widths as well as shifts of spectral lines.

Besides the electronic contributions to the line profile, the influence of the plasma ions have been
included via the well known model microfield method. Thereby, not only the ionic contributions to
the line width but also to its shift have been included. In order to deal with the interaction between
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the radiator and the inhomogeneities of the ionic microfield, the corresponding expressions given in
Ref. 11 for neutral radiators have been generalized for the case of charged radiators. Furthermore,
fine structure effects have been included.

Applying the developed theory, the profiles of the H, and P, lines of He Il have been calculated
and compared to recent experimental results. The theoretical dependence of the width on the
electron density for both lines agrees, at least qualitatively, with the experimental results. Neverthe-
less, it must be stated that the inclusion of fine structure splitting does not remove the discrepancies
between the already published theoretical and experimental results. For low electron densities,
however, the fine structure splitting plays an important role. The remaining discrepancies between
theoretical and experimental line widths are presumably caused by the underestimation of ion
dynamics within the applied model microfield method. The shift of the P, line agrees excellently with
experimental results. For the H, line, however, large discrepancies between theoretical and experi-
mental line shifts occur. The reason for these discrepancies are unclear. Within all the developed
theories up to now, it is impossible to reach at the same time a good agreement with the
experimental results for both, the H, and the P, lines since the theoretical line shift depends on the
corresponding transition matrix elements.
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APPENDIX A

The general formalism for calculating the function B,(f), as described in Ref. 11, remains unchanged. Using the same
designations the as in Ref. 11, we can express B,(f) by auxiliary functions W(v}) as follows:

B,(f) = jm dx *[PO) + ¥ )] exp{ — x*[PP) — YE(0)1}2(Bx)
4]

/ J ) dx x%exp{ — x*2[FLv) — ¥P(v)]}jo(Bx), (A1)

o
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where j; is the spherical Bessel function of order /, and v = px*/2 In order to calculate the auxiliary functions ‘¥ we use the
same approximation for the correlation functions as in Refs. 29 and 30. The one-body correlation function is then given by

g1 = exp{ — Z,(4nD?n,)"|Ry| " 'exp( ~ RplR,|/D)},
and the two-body function reads
g2 = — ZX4nD’n,)""|R, — R;| "' exp( — RplRy — R,|/D),

where Rp = (1 + Z,)"? and D = /(ecksT)/(e*n.).
Then, the auxiliary functions can be expressed as
2(2m)11? s exp( —u)

15 ZpRop u

YO = 15(87)" ‘“deexp{ -~ } [1 —jole)]y?
0

n= =0

¥ =15(8n)““RDv3/nfr y%dylf' yidys ¥ (= 0/@1+ D Lider) — 81.0]
(43 »=0
x [jes) — &1, 0]fl>(u1)ﬁ<(u2)’

W = Gj ¥iy(v, y1) jaler) dyy,
4]
and finally

o0 49
¥ = 12Ranv3j y%dyxj y3dy2y(o, ¥1)

= ¥ =0

X[jz(b‘l) - i (—er+ {B (0= 1)er? - 1]]’:(81) + 3er 1jl+1(31)}jl(32):lﬁ>(u1)ﬁ<(u2)-
=0

with
&(v, y) = Zy~¥(1 + vy) exp( — vy),

(v, y) = ¥y °[1 + vy + (vy)?/3]exp( — vy),
u = Rpvy,
y = (keg) ~'/’R.

(A2)

(A3)

(A4

(A3)

(A6)

(A7)

(A8)
(A9)
(A10)
(A11)



