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Abstract. The first constrained moments of the microfield octupole inhomogeneity tensor at ionized emitter
have been calculated for the first time. Calculations were performed for three-component Debye plasmas
using cluster expansion method in Baranger-Mozer scheme.

PACS. 52.20.-j Elementary processes in plasmas – 52.25.-b Plasma properties – 32.70.Jz Line shapes,
widths, and shifts

1 Introduction

For a theoretical description of the spectral line asymme-
try and shift of hydrogen and hydrogen-like ions the in-
homogeneity of the local ion microfield in the plasma and
the second order corrections in the perturbation theory
(PT) are necessary to be taken into account [1–3]. The
most efficient source of this asymmetry is the emitter-
(ion microfield) quadrupole interaction. The quadrupole
interaction is proportional to R−3

0 , where R0 is the
mean ons-perturbers distance defined by the relationship
(4/15)(2π)3/2R3

0Ne = 1. The quadrupole inhomogeneity
tensors of the local ion microfield in the plasma, in multi-
particle model, have been calculated in papers [1,2,4–15].
Terms proportional to R−4

0 are the second order im-
portance source of the asymmetry and shift i.e.: the
quadratic Stark effect, the second order corrections in PT
for quadrupole interactions, and the first order correction
in PT for the octupole interaction [2,16].

In paper [17] it is shown that in the wings of Hβ

line, formed in plasmas of electron concentrations Ne >
1017 cm−3, great discrepancies between calculated and
measured asymmetry parameters occur. In our opinion
the probable reason for these discrepancies is negligence
in the calculations [17] of all terms proportional to R−4

0 .
Substantial discrepancies occur also between the calcu-
lated and measured quantities for lines of the hydrogenic
ions, as to e.g. the FWHM and shifts of the Hα line of HeII
in paper [12]. In that last paper the second order correc-
tions in PT for quadrupole interactions and the first order
correction in PT for the octupole interactions have been
entirely omitted, and, moreover, the quadratic Stark effect
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has been taken into account only partially. The physical
model becomes internally consistent only when all terms
proportional to R−4

0 are accounted, in all matrix elements
of each operator occurring in the line profile formula. The
contributions of the octupole interactions to the matrix
elements: of the Hamiltonian, of the dipole momentum
of the transition, and of the broadening operator cause
symmetrical (in respect to the unperturbed line location)
changes of the line profile. Furthermore, these changes in-
directly affect the values of the asymmetry parameters of
the line profile [18]. For a fixed spectral line the impor-
tance of the octupole interaction increases relatively with
the increasing Ne, and also with the order number of the
spectral line in the series. The octupole interaction gives,
furthermore, an essential contribution to the lowering of
the ionization energy of emitters in plasma. On the sub-
stantial role of the high order multipoles in plasma-emitter
interaction see e.g. [19].

This is the second paper dealing with the problem
of octupole inhomogeneity tensors of ion microfield in
plasma. The first paper [15], hereafter referred to as
HO, dealt with inhomogeneity tensors (in particular with
quadrupole and octupole tensors) of ion microfield in a
two-component Debye plasma at neutral emitter. The
problem of the octupole inhomogeneity tensors at ionized
emitter in three-component Debye plasma is the subject
of this paper.

2 Formalism

The plasma is represented here as a collection of two kinds
of (pseudo) ions with number charges Za and Zb and con-
centrations Na and Nb. The temperature of ions is Ti.
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Ions interact with each other through an effective shielded
Coulomb potential (Debye potential). The effective poten-
tial includes the effect of the ion-electron interactions. The
temperature of electrons are indicated as Te. The num-
ber charge of an emitter is Ze. The plasma is neutral,
i.e. ZaNa + ZbNb = Ne. The composition parameter is
C = Nb/(Na + Nb) and temperatures ratio parameter is
RT = Te/Ti. For such binary plasma, the ion microfield
distribution function in Baranger-Mozer [20] scheme has
been calculated in paper [21]. The equations presented
below are based on the formalism developed in the pa-
pers [7,15,21].

For the description of the octupole inhomogeneity ten-
sor we have introduced, similarly as in HO, a seven-dimen-
sional vector,

G = {Gn}
≡ {Exxy, Exxz, Exyy, Exyz, Exzz, Eyzz, Ezzz}. (1)

The components can be written as follows

Eijk =
(

∂2Ei(r)
∂xj∂xk

− 1
5

[
∂

∂xi
∇ · E(r)δjk

+
∂

∂xj
∇ ·E(r)δik +

∂

∂xk
∇ · E(r)δij

])∣∣∣∣
r=0

, (2)

where E is the electric field

E =
na∑

α=1

Ea
α(Ra

α) +
nb∑

α=1

Eb
α(Ra

α), (3)

at the origin (emitter) produced by na pointlike (pseudo)
ions a located at Ra

1, . . . ,R
a
na

and nb (pseudo) ions of b

located at Rb
1, . . . ,R

b
nb

. In spherical coordinates (R, θ, and
ϕ), the components of the octuople inhomogeneity tensors
Gp

α,n, can be written as follows:

Gp
α,n = −Gp

αA(3)
n (θp

α, ϕp
α), (4)

where the seven functions A
(3)
n depending on angles are

given by equation (48) of HO. The upper index (3) indi-
cates the octupole terms similarly as of HO. The radial
contribution to the octupole inhomogeneity tensor is

Gp
α = Zpe

[
1 + 3Rp

α/D + 6(Rp
α/D)2 + (Rp

α/D)2/5
]

× exp(−Rp
α/D)/(Rp

α)4, (5)

where D =
√

kT/(4πe2Ne) is the electronic Debye length.
Then, the joint probability distribution function for the
ion microfield strength E and the microfield inhomogene-
ity tensor G is given by [7,15]

W (E,G) =
1

(2π)10

∫
d3k d7σ

× exp{−i [k ·E + σ · G]}F (k, σ). (6)

In the case of our plasma the generalized (compared to
HO) Fourier transform has the form:

F (k, σ) = exp

[
na+nb∑

l=1

l∑
m=0

Nm
a N l−m

b

m!(l − m)!
hm,l−m(k, σ)

]
. (7)

This Fourier transform was obtained by the same method
as in the case of the Fourier transform F (0)(k) ≡ F (k,0)
of the ion microfield distribution function W (E) ≡
W (E,0) calculated in [21]. The general expression for
functions hm,l−m(k, σ), resulting from the cluster expan-
sion method in Baranger-Mozer scheme, is as follows:

hm,l−m(k, σ) =
∫

Φa
1 . . . Φa

mΦb
m+1 . . . Φb

l

× gm,l−m(Ra
1 , . . . ,R

a
m,Rb

m+1, . . . ,R
b
l )dR

a
1 , . . . dRb

l , (8)

with
Φp

α = exp [i(k ·Ep
α + σ · Gp

α)] − 1, (9)

where gm,l−m is the correlation function for m ions of
type a and (m−l) ions of type b. By analogy, we introduced
also the following symbols

h
(0)
m,l−m(k) ≡ hm,l−m(k,0) (10)

and
ϕp

α = exp(ik · Ep
α) − 1. (11)

Calculation of the line profile using as many as 11 di-
mension functions W (E,G) is very burdensome. There-
fore, in the Hamiltonian for an emitter emerged in plasma
one uses the mean values (taken for a fixed E vector)
of the quadrupole, octupole and higher order terms to
the emitter-plasma interactions. Such an approximation is
acceptable because the above-mentioned interactions are
considerably smaller than the dipole term. Estimation of
the accuracy of this approximation can be found in pa-
pers [10,13]. The constrained average (at an emitter) of
the microfield inhomogeneity octupole tensor is defined
by

〈Gn〉E ≡
∫

d7GGnW (E,G)/W (E) (12)

and can be calculated [22] from

W (E)〈Gn〉E =
i

8π3

∫
d3k exp(−ik · E)F (3)

n (k), (13)

where F
(3)
n (k) represents a derivate of the Fourier trans-

form

F (3)
n (k) ≡ [∂F (k, σ)/∂σn]σ=0

=

[ ∞∑
l=1

l∑
m=0

Nm
a N l−m

b

m!(l − m)!
h

(3)
(m,l−m),n(k)

]

×F (0)(k), (14)

where

h
(3)
(m,l−m),n(k) ≡ [

∂h(m,l−m)(k, σ)/∂σn

]
σ=0

. (15)
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However, the probability distribution function for the ion
microfield strength is calculated from

W (E) =
1

(2π)3

∫
d3k exp(−ik ·E)F (0)(k). (16)

In reference [23] it was shown that in the case when the
Debye potential is valid – a plasma model is internally
coherent, when the group expansion terms are taken into
account up to the two-body (pseudo)ion-ion correlations
term. Therefore, in equations (7) and (14) the expansions
can be limited to l = 2. Then, the Fourier transform and
its derivate can be written (see Eq. (20) in [21])

F (0)(k) ∼= exp
[
Nah

(0)
a (k) + Nbh

(0)
b (k)

+
1
2
N2

ah(0)
aa (k) + NaNbh

(0)
ab (k) +

1
2
N2

b h
(0)
bb (k)

]
, (17)

and

F (3)
n (k) ∼= F (0)(k) exp

[
Nah(3)

a,n(k) + Nbh
(3)
b,n(k)

+
1
2
N2

ah(3)
aa,n(k) + NaNbh

(3)
ab,n(k) +

1
2
N2

b h
(3)
bb,n(k)

]
, (18)

where we introduced new symbols: a ≡ (1, 0), b ≡ (0, 1),
aa ≡ (2, 0), bb ≡ (0, 2), ab ≡ (1, 1). The above functions
h(k) resulting from equations (8), (9) and (15) can be
written as follows:

– one-body functions

h(0)
p (k) =

∫
gp ϕp

1 d3Rp
1; (19)

h(3)
p,n(k) = i

∫
gp(ϕ

p
1 + 1)Gp

1,n d3Rp
1; (20)

– two-body functions

h(0)
pp (k) =

∫
gpp ϕp

1ϕ
p
2 d3Rp

1d
3Rp

2, (21)

h
(0)
ab (k) =

∫
gab ϕa

1ϕ
b
1 d3Ra

1d3Rb
1, (22)

h(3)
pp,n(k) = i

∫
gpp

[
(ϕp

1 + 1)ϕp
2 Ga

1,n

+ ϕp
1(ϕ

p
2 + 1)Gp

2,n

]
d3Rp

1d
3Rp

2, (23)

h
(3)
ab,n(k) = i

∫
gab

[
(ϕa

1 + 1)ϕb
1 Ga

1,n

+ ϕa
1(ϕb

1 + 1)Gb
1,n

]
d3Ra

1d3Rb
1, (24)

for p = a or b. (Note: Eq. (41) on page 429 in HO, which
is equivalent to Eq. (23), has typographical errors.) The
functions h(0)(k) are the same as in [21]. In the case of the
weak coupled plasma (i.e. Debye plasma), the one-body
at a charged point and the two-body correlation functions

(according with terminology [21]) are given by the follow-
ing expression, cf. e.g. [7,9,12,21,24,25],

gp = exp
[
−ZeZpRDRT Γe

exp(−Rp
1/Dp)

Rp
1/Dp

]
, (25)

gpp = −Z2
pRDRT Γe

exp (−|Rp
1 − Rp

2|/Dp)
|Rp

1 − Rp
2|/Dp

, (26)

gab = −ZaZbRDRT Γe

exp
(−|Ra

1 − Rb
1|/Dp

)
|Rp

1 − Rp
2|/Dp

, (27)

for p = a or b; where Γe = ρ3/3 is the electronic plasma
parameter, ρ = R0/D is the screening parameter, and
Dp = D/RD is the plasma Debye length, whereas [21]

RD =
{

1 + RT

[
Z2

a + C(Z2
b − Z2

a)
Za + C(Zb − Za)

]}1/2

. (28)

In the Debye plasma (where Γe � 1) higher order con-
tributions to two-body correlation functions, as well as
three-body and terms of higher number-body correlation
functions are proportional to the square or higher powers
of the plasma parameter (∼ Γ n

e at n ≥ 2) and, there-
fore, they are negligible [25]. The integrals given by equa-
tions (19)–(24) have been calculated similarly as in our
earlier papers [7,12,15]. There are only two essential dif-
ferences in calculations of integrals in the present paper
compared to HO: (i) the one-body correlation function
is given by equation (25) which in HO are equal to one
(gp = 1), (ii) a new definition of the variable u is intro-
duced. Namely, in HO in equation (34) we defined u as
u =

√
1 + Zpvy, whereas in the present paper u = RDvy.

Other variables are the same as in HO, i.e. y = (ke)−1/2R,
v = ρx1/2 and x = kE0, where E0 is the normal Holtsmark
field strength. Because we apply a similar calculation
technique as in HO, we introduce also similar auxiliary
functions Ψ(v). Then, the contributions of one-body and
two-body clusters in equations (17) and (18), using the
auxiliary functions, can be written:

Nah(0)
a + Nbh

(0)
b = −x3/2Ψ

(0)
1 (v),

1
2
N2

ah(0)
aa + NaNbh

(0)
ab +

1
2
N2

b h
(0)
bb = x3/2Ψ

(0)
2 (v),

Nah(3)
a,n + Nbh

(3)
b,n =

15
28

E0

R2
0

Ψ
(3)
1,n(v)

×A(3)
n (θk, ϕk),

Nah(3)
aa,n + NaNbh

(3)
ab + Nbh

(3)
bb,n =

15
28

E0

R2
0

Ψ
(3)
2,n(v)

×A(3)
n (θk, ϕk), (29)

where the angles θk and ϕk describe the direction of the
vector k in the coordinate system xyz.



340 The European Physical Journal D

0.8

0.0

0 1 2 3 4β
0.0

0.2

0.4

0.6

W
ρ
(
β
)

Fig. 1. The electric microfield distribution function Wρ(β)
at a singly-charged emitter (Ze = 1) in singly-ionized plasma
(Zp = 1) as a function of the reduced electric field β, for sev-
eral values of the screening parameter ρ = 0.0, 0.2, 0.4, 0.6, and
0.8. The solid lines represent our results, the points represent
Hooper’s data [26], whereas the dashed lines represent Mozer-
Baranger’s [20] results.

Finally, the average of the component of the microfield
inhomogeneity octupole tensor given by equation (12) can
be written in the same from as in HO:

〈Gn〉E =
15
28

E0

R2
0

B(3)
ρ (β)A(3)

n (θE , ϕE), (30)

where the octupole function is,

B(3)
ρ (β) =

2
π

β2/Wρ(β)
∫ ∞

0

dxx2
[
Ψ

(3)
1 (ρx1/2) + Ψ

(3)
2 (ρx1/2)

]

× exp
{
−x3/2

[
Ψ

(0)
1 (ρx1/2) − Ψ

(0)
2 (ρx1/2)

]
jt(βx)

}
, (31)

whereas the microfield distribution function is

Wρ(β) =
2
π

β2

∫ ∞

0

dxx2

× exp
{
−x3/2

[
Ψ

(0)
1 (ax1/2) − Ψ

(0)
2 (ax1/2)

]}
j0(βx);

(32)

both functions are given in the normalised scale β =
E/E0. The function jl(ε) is the spherical Bessel function
of order l.

3 Numerical results

The main aim of the present paper is to perform calcula-
tions of the octupole functions B

(3)
ρ (β) at ionized emitter.

From equation (31) we see that to calculate the octupole
functions B

(3)
ρ (β), the distribution functions Wρ(β) are

needed. In Figure 1 our Wρ(β) function calculated at ion-
ized emitter in the case of singly-ionized plasma with that
of Hooper [26], and with the original Baranger-Mozer’s

0.2
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p=2

(
 
3
)

0 1 2υ 

1

0.1

 Ψ
p
(
υ
)

Fig. 2. Comparison of the auxiliary octopule functions at
singly-charged emitter (Ze = 1) and the auxiliary octopule
function at a neutral emitter (Ze = 0) in singly-ionized plasma
(Zp = 1). The solid lines represent one-body auxiliary func-
tions at an ionized emitter, for several values of the screening
parameter ρ = 0.2, 0.4, 0.6, and 0.8. The dashed line repre-
sents the one-body auxiliary function at a neutral emitter. The
pointed line represents the two-body auxiliary functions.
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B
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Fig. 3. The octupole function B
(3)
ρ (β) at a singly-charged

emitter (Ze = 1) in singly-ionized plasma (Zp = 1) as a func-
tion of the reduced electric field β, for several values of the
screening parameter ρ = 0.0, 0.2, 0.4, 0.6, and 0.8.

one [20] are compared as an example. We find an excel-
lent agreement between our distribution function Wρ(β)
at ionized emitter and the Hooper’s one, similarly as it
was shown in [25]. Such an agreement is a positive test of
a numerical code used in the present paper.

In the next figures, as examples, our numerical results
for octupole functions are presented. Figure 2 presents
a comparison of the auxiliary octopule functions at ionized
emitter and the auxiliary function at neutral emitter. We
see that only for v < 1 essential differences appear between
the one-body function at neutral emitter Ψ

(3)
1 (v, Ze = 0)

and the one at ionized emitter Ψ
(3)
1 (v, Ze = 1). The two-

body auxiliary functions Ψ
(3)
2 (v) are the same, because

they do not depend on the number charge of the emitter.
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Fig. 4. Comparison the octupole function Λ
(3)
ρ (β) at a singly-

charged emitter (solid lines) and one at a neutral emitter
(dashed lines) – both functions in singly-ionized plasma, for
several values of the screening parameter ρ = 0.0, 0.2, 0.4, 0.6,
and 0.8.
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Λ
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4
(
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Fig. 5. The octupole function Λ
(3)
0.4(β) in doubly-ionized

plasma (Zp = 2) at an ionized emitter for several values of
the number charges of emitter Ze = 0, 1, 2, 3, and 4.

Figure 3 shows the strong joint shielding and corre-
lated effect (represented by the screening parameter ρ) for
octupole function B

(3)
ρ (β) at an ionized emitter in singly-

ionized plasma. The effect can also be observed in Fig-
ure 4 for the function Λ

(3)
ρ (β) = B

(3)
ρ (β)Wρ(β)/β. Ad-

ditionally, in Figure 4 this function is compared with the
function Λ

(3)
ρ (β) at neutral emitter, both functions are cal-

culated for singly-ionized plasma. For a fixed value of the
screening parameter ρ (which represents also the physical
conditions of the plasma) these functions differ slightly
from each other. The function Λ

(3)
ρ (β) conveys the influ-

ence of the emitter – (plasma) octupole interaction on the
line profile better than the function B

(3)
ρ (β). Thus, in the

next figures the functions Λ
(3)
0.4(β) are presented. In Fig-

ures 5–7 three effects are shown: the weak emitter effect,
the perturber charge effect, and the composition perturber
charge effect, respectively. In the last two figures the func-

1

4

0 2 4 6
β

0.0

0.2

0.4

0.6

Λ
.
4
(
β
)

(
 
3
)

Fig. 6. The octupole function Λ
(3)
0.4(β) at a doubly-charged

emitter (Ze = 2) in plasmas with the number charges of per-
turbers Zp = 1 or 2 or 3 or 4.
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Λ
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Fig. 7. The octupole function Λ
(3)
0.4(β) at a singly-charged emit-

ter (Ze = 1) in plasmas of two kinds of perturbers: Za = 1
and Zb = 2, for several values of the composition parameter
C = 0.0, 0.5, and 1.0.

tion values Λ
(3)
0.4(β) are smaller for perturbers with larger

Zp. At first glance it seems that this dependency could
not be correct. However we would like to emphasize that
for neutral plasma of identical temperatures and identi-
cal electron densities Ne (ρ is constant) – ion densities
Np = Ne/Zp are smaller for larger Zp values. Indeed, the
distances between the emitter and perturbers are larger
and the inhomogeneity of the ion microfield is therefore
smaller.
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