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Hydrogen line Stark profiles are calculated in the static
ion approximation including the ion-quadrupole interac-
tion and the quadratic Stark effect. The statistics of the
ion-quadrupole interaction is evaluated in the Mozer-
Baranger limit taking into account the screening and
the ion correlations. The generalized function B,(f) ex-
ceeds several times the ordinary Chandrasekhar and von
Neumann function B(f)=B,-,(f) (i.e. B,(f) at p=0) and
in the same proportion increases the importance of the
ion-quadrupole interaction. For n, ranging from 10'®
to 10'® cm 3, calculated parameters of the asymmetry
and shift of H,; agree well with measurements by different
authors.

PACS: 32.60.5; 32.70

1. Introduction

In the approximation of plasma-emitter dipole interac-
tion, the profiles of hydrogen (and H-like ions) lines cal-
culated in the first order of perturbation theory are sym-
metric and unshifted, independent of assumptions con-
cerning the ion motion (static, e.g. [1], and dynamic,
e.g. [2], ions). To explain the observed shifts and asym-
metries of H-line profiles, corrections with respect to this
description [1] of the emitter-plasma interaction are in-
troduced and the second order of perturbation theory
(quadratic Stark effect) is included into the dynamic ap-
proximation for electrons and the static one for ions
[3-9].

The main cause of the red shifts of H-lines is the
interaction of the emitter with free electrons, whereas
the asymmetry results mainly from inhomogeneities of
the ionic field and, to a smaller extent, from the static
quadratic Stark effect. Fine structure splitting is an addi-
tional source of asymmetry [10], which in the case of
line profiles of H-line Ne X is of opposite sign and of
the same order of magnitude as the asymmetry resulting
from emitter-ion-quadrupole interaction (EIQI) and the

static quadratic Stark effect. However, due to its very
strong dependence on the radiator nuclear charge, this
source of asymmetry is negligibly small for H-atoms.

The specific shape of the profile of the hydrogen
Balmer line H; allows to define separate parameters of
shift and asymmetry, and to isolate the contributions
of electrons to the shift and of ions to the asymmetry
[9. 11. 12]. It was shown [9, 12] that the asymmetry
of H, measured in a wide range of the electron densities
n, nearly twofold exceeds the asymmetry calculated tak-
ing into account the EIQI, the static quadratic Stark
effect, and the so-called trivial asymmetry. In this calcu-
lations., EIQI have been taken alternatively, ie. as in
[5] or [7]. As suggested in [9, 12]. such great discrepan-
cy between calculations and measurements evidences un-
satisfactory description of EIQI.

Kudrin and Sholin [5] were first to show that the
inhomogeneities of ion-produced field can cause the
asymmetry of the H, peaks. In [5. 6] EIQI was described
in the Nearest Neighbour Limit. This approach was gen-
eralized by Demura and Sholin [7] by introducing the
joint probability distribution function for the electric mi-
crofield strength and the microfield gradients in Holts-
mark Limit (i.e., taking into account all the uncorrelated
and unscreened ions). In this approximation the mean
field gradients are proportional to the Chandrasekhar
and von Neumann [13] function B(f). Joyce et al. [10]
included the EIQI to the description of the profiles of
lines emitted by highly ionized H-like ions in the Inde-
pendent Perturber Model (screened but uncorrelated
ions) [14]. Lewis and Margenau [15] have used this
model to calculate the high-frequency (electronic) com-
ponent of the microfield distribution. This model corre-
sponds to that which has been proposed by Ecker and
Muller [16] for low-frequency (ionic) component of the
microfield distribution.

The aim of this paper is to include the ion-quadru-
pole-interaction into the description of the H-line profile.
using the statistical description of microfield gradients
in the Mozer-Baranger Limit (i.e., taking into account
the screening effect and the ion correlations), and to rean-
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alyze the asymmetry and shift of H,. We realize that
the microfield distribution calculated by the technique
proposed by Hooper [17] ie. taking into account all
the correlations, is more accurate than that obtained
in the M —B Limit, where only pair correlations are
taken into account. However, the differences between
the microfield distributions obtained in these two ways
are rather small and therefore we assume that it is suffi-
cient to calculate the microfield gradients distribution
exact to the pair correlations.

2. Ion-quadrupole interaction

In the static ion approximation, the Hamiltonian of a
H-atom in a plasma, including inhomogeneities of the
ionic field and the shielding of ions by free electrons,
is

H=H0_d.E_1/6ZQijEij+1/660"2V'E' (1}
ij

where H, is the Hamiltonian of the isolated atom and
r is the distance between the electron e, and the atomic
nucleus. The second term in (1) describes the plasma
ions-emitter dipole interaction, where d= —e,r is the
dipole moment and E={E;} is the electric microfield
strength given by

E=YE,=

(I1+R,/D)exp(—R,/D). (2)

a

where o counts the ions with charges g, at positions
R,={X,,} relative to the atomic nucleus; D
=(kgT/4meqgn,)''? is the electronic Debye radius. The
third term in (1) represents the quadrupole interaction
of the radiator with inhomogeneous electric microfield
of the plasma ions, where Q;;= —e,(3x,x;—0d,;r%) is the
quadrupole tensor and E;; the inhomogeneous microfield
tensor. This symmetrical E;;=E;; and traceless Tr [E, |
=0 tensor has been defined as fol]ows

E;;=0E;/0x;—1/36;;V-E, (3a)

and is given by
EA:ZE = _Z q
1 a1y RS

'exp(—Rz/D)(3Xa,iX1.j—5in3). (3b)

J/D+(R,/D)?/3]

This tensor is used in (1) instead of the field gradients
CE;/0x;, because the divergence V-E of the Debye field
differs from zero and equals

V-E= _D_qua/Raexp(_Ra/D)~

Because of (typical R,)xR,<D. then |V-E|/|E|
~(R,/D)*=p? <1, the last term in (1) is omitted here.
(Ro is the distance defined by the relationship (4/15)
(2n)*2R3n,=1). Therefore the quantities E;=CE/Cx;
are approximately equal to the gradients of the 1omc

field and henceforth they will simply be referred to as
the field gradients.

The joint probability density for the microfield
strength E and the microfield gradients E;; (with five
independent components in coordinates x y z, where gen-
erally EX0z) is given by [7]

: I s
H(E.G)=‘2m8f kfd*e

exp|{—i[k-E+a G]j F(k, o). (4a)

where, for convenience, the tensor E;; is represented as
a five-dimensional vector

G_iGJ}:(E.\'X‘ Ezz. E,\')"EXZ‘ E)’Z}" ‘4b)
In the case of a plasma containing ions of only one kind
(1.e. g,=const) with density n, the Fourier transform has
the form

x o op
F(k. ajzexp{ Y %h,,(k. a’)}. (5)
p=1£"

The functions h,(k, g) correspond to increasing orders
in a cluster expansion [18-20]. For small |;|, the Fourier
transform has the series expansion

F(k.o)=F"(k)+ i FV(k)o;. (6a)
i=1

where

FV(k)=F?(k) Z —h”’ (k) (6b)

with

hy J(k)=[ch,(k.6)/co],-0. (6¢)

The function F'” (k) is the Fourier transform of the field
distribution function W(E) given by

* o p
FO(Kk)=exp { y h‘p‘“(k)} (6d)
p=1 p J
with h)(k)=h, (k. 0).
For ca]cu]atlons of the line profiles, the constrained

averages of the field gradients (E;;>g are useful ([7], see
also [10, 21]). They are defined by

(Ge=[d°GG,W(E, G)W(E) (7)

and can be calculated [7, 13] from

W(E)NG = — ¢ [d*kexp(—ik-E)
“[CF(k.6)/00]s-y. (8)

The present calculation includes only the first two terms
of the series in (5) and (6). The derivative of the Fourier



transform can be written

[0F (k. 0)/00,),-0=[nh{)(K)+ 0 S ()] FOK)  (9a)
with

FOk)=exp[nh®(k)++n? hY" (k)]. (9b)

Introducing the reduced modulus of the field strength
B=E/E,, the field gradients ( E;;>g become

5 E
<Eij>l‘::(32712R_ZBp(ﬁ)Aij(9Ea Qp) (10)

)

where the angle functions A4;;(@;, ¢) are given by (A4),
angles @ and ¢ being the spherical coordinates of the
vector E, and E,=¢,/R{ is the normal field. As a general-
ization of the Chandrasekhar and von Neumann func-
tion B(f)= By(p). the function B,(f) includes ion screen-
ing and correlations in the Mozer-Baranger Limit. It

Table 1. The generalized function of Chandrasekhar and von Neumann B,(f) at a neutral

point for singly charged perturbers

B B,(B)
0.0 0.2 0.4 0.6 0.8
0.10 0.1854 E—02 0.2860E—02 0.4222E—02 0.6083 E—02 0.8702E—02
0.20 0.7434E—-02 0.1147E—01 0.1694 E—01 0.2440E—-01 0.3479E—01
0.30 0.1680 E—01 0.2594E—01 0.3832E—01 0.5512E-01 0.7822 E—01
0.40 0.3004 E—01 0.4644E—01 0.6862 E—01 0.9854 E—01 0.1390E+00
0.50 0.4729E—01 0.7319E—01 0.1082 E+00 0.1550E+00 0.2171E+00
0.60 0.6873 E—01 0.1065E +00 0.1575E+00 0.2250E +00 0.3127E+00
0.70 0.9457E—01 0.1468 E +00 0.2170 E+00 0.3090 E +00 0.4258 E+00
0.80 0.1251 E+00 0.1944 E 400 0.2872 E+00 0.4074 E+00 0.5565E+00
0.90 0.1605 E +00 0.2498 E+400 0.3689 E +00 0.5206 E +00 0.7048 E+00
1.00 0.2013E+00 0.3136 E4+00 0.4624 E+00 0.6491 E +00 0.8709 E+00
1.10 0.2478 E+00 0.3864 E+00 0.5685E+00 0.7933 E+00 0.1055E+01
1.20 0.3004 E +00 0.4687 E + 00 0.6878 E+00 0.9534E +00 0.1256 E+01
1.30 0.3597E +00 0.5612E+00 0.8207 E+00 0.1130E+01 0.1474 E+01
1.40 0.4262 E +00 0.6646 E 400 0.9679 E +00 0.1322E+01 0.1710E+01
1.50 0.5004 E +00 0.7796 E + 00 0.1130E+01 0.1531E+01 0.1962E+01
1.60 0.5830E +00 0.9067 E+00 0.1306 E+01 0.1756 E+01 0.2232E+01
1.70 0.6746 E +00 0.1047E+01 0.1498 E+01 0.1998 E+01 0.2517E+01
1.80 0.7761 E +00 0.1200E 401 0.1706 E+01 0.2256 E+01 0.2819E +01
1.90 0.8880 E +00 0.1368 E+01 0.1929E +01 0.2529E+01 0.3136 E+01
2.00 0.101TE+01 0.1550E+01 0.2168 E+01 0.2819E+01 0.3469E +01
2.10 0.1146 E +01 0.1746 E+01 0.2423E+01 0.3125E+01 0.3816 E+01
2.20 0.1294E +01 0.1959E 401 0.2694 E+01 0.3445E+01 0.4179E+01
2.30 0.1456 E+01 0.2187E 401 0.2980E+01 0.3781 E+01 0.4555E+01
2.40 0.1632E+01 0.2430E+01 0.3282E+01 04131 E+01 0.4945E +01
2.50 0.1822E+01 0.2690E 401 0.3599E +01 0.4496 E +01 0.5349E+01
2.60 0.2029E +01 0.2966 E 401 0.3931E+01 0.4874E +01 0.5767E+01
2.70 0.2251E+01 0.3258 E+401 0.4278 E+01 0.5266 E +01 0.6198 E+01
2.80 0.2490E +01 0.3566 E+01 0.4640E +01 0.5670E +01 0.6642E +01
2.90 0.2746 E+01 0.3890E +01 0.5016 E+01 0.6088 E +01 0.7099 E +01
3.00 0.3020E +01 0.4229E +01 0.5406 E +01 0.6518 E+01 0.7568 E+01
3.20 0.3620E +01 0.4954 E+01 0.6227E+01 0.7413E+01 0.8535E+01
3.40 0.4290E +01 0.5739 E+01 0.7101 E+01 0.8354E +01 0.9548 E+01
3.60 0.5030E +01 0.6581 E+01 0.8025E+01 0.9340E +01 0.1062E+02
3.80 0.5838 E+01 0.7480 E+01 0.8996 E +01 0.1038 E+02 0.1172E+02
4.00 0.6711E+01 0.8435E+01 0.1001 E+02 0.1147E+02 0.1284E+02
4.25 0.7889 E +01 0.9694 E + 01 0.1135E+02 0.1288 E+02 0.1431E+02
4.50 09156 E+01 0.1102E+02 0.1274E +02 0.1435E+02 0.1584E+02
4.75 0.1051E+02 0.1243E+02 0.1420E +02 0.1586 E+02 0.1742E+02
5.00 0.1193E+02 0.1389E+02 0.1571E+02 0.1742E+02 0.1905E+02
5.50 0.1499E +02 0.1699 E 402 0.1890E +02 0.2072E+02 0.2244E+02
6.00 0.1829E+02 0.2032E+02 0.2231E+02 0.2422E+02 0.2603 E +02
6.50 0.2180E+02 0.2384E+02 0.2588 E+02 0.2789E+02 0.2974E+02
7.00 0.2551E+02 0.2754E+02 0.2965E+02 0.3167E+02 0.3373E+02
8.00 0.3344E+02 0.3546 E+02 0.3764E +02 0.3988 E+02 0.4210E+02
9.00 0.4199E+02 0.4400E + 02 0.4621 E+02 0.4851E+02 0.5079E +02
10.00 0.5110E+02 0.5308 E+02 0.5537E+02 0.5785E+02 0.6025E+02
12.00 0.7082E+02 0.7264 E+02 0.7521E+02 0.7790 E +02 0.8089E +02
14.00 0.9235E+02 0.9407E+02 0.9675E+02 0.9972E+02 0.1030E+03
16.00 0.1156 E+03 0.1174E+03 0.1200E+03 0.1230E+03 0.1261 E+03
18.00 0.1403E+03 0.1422E+03 0.1448 E+03 0.1480E+03 0.1513E+03
20.00 0.1664E +03 0.1683E+03 0.1710E+03 0.1743E+03 0.1780E+03
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can be expressed by auxiliary functions ¥ (v). which are
calculated in Appendix A:

2 ¢ >
B,(B)=—F*/W,(B) | dxx* [V () + ¥ (v)]
0
cexp { —x* 2 [ () = B ()]} o (S ). (11)

with the static ion microfield probability density in the
Mozer-Baranger limit [19, 20]

W,(f)=4nE3 B> W(E)=

5 .

B [ dxx?exp{—x¥ [V 0) = B (0]} jo(Bx). (12)
0

(Our recalculated values of W,(f) are in very good agree-

ment with those in paper [20]. This agreement confirms

the numerical code used in our calculations.)

For the present study, the function B,(f}) has been
calculated at a neutral point in a singly ionized (g, =e,)
isothermal (T,,,=T,=T) plasma. Values of B,(f) are
given in Table 1. At p=0, this function reduces to the
ordinary Chandrasekhar and von Neumann function
[13]. tabulated by Demura and Sholin [7]. Taking into
account screening and correlation effects leads to consid-
erable increase of B,(f) as compared with B(f). As can
be seen in Fig. 1, the discrepancy between B, (f) and
B(f) increases with increasing parameter p. This is a
measure of the importance of the effects included in the
present calculations.

To describe the contribution of the atom-ion quadru-
pole interaction to the H-line profile, the authors of [7]
introduced two further universal functions /() and y(f).
As a result of the generalization in the Mozer-Baranger
Limit, the corresponding functions A,(f) and z,(f). de-
fined by Demura and Sholin [7]. become

A, (B)y=W,(B)-B,(p)/
and

d
7o(B)=— dp [W.(B)-B,(B)]-

These functions are presented in Figs. 2 and 3. The con-
clusions concerning these functions are analogous to
those concerning B, ().

3. The H-line profiles

In the static ion approximation including the quadrupole
interaction of the emitter with the electric microfield gra-
dients of the perturbing ions, the line shape function
is given by [7]

P(w)=[d*E[dG® W(E, G)P(w. E, G). (13)

where P(w, E, G) is the electron-broadend line profile
for a given field E and field gradients G (see (4b)). The
electron-broadened line profile for a radiator transition

Xo(p)

Bq(p)/B(®)

Fig. 1. Ratio of the gencralized Chandrasekhar and von Neumann
B,(f) function and the ordinary function B(f) (i.e. B,(p) at p=0)
as a function of the reduced field strength f. for several values
of p=R,/'D

Ag(P)

<] 1 2 3 4 /3 5 6
Fig. 2. 1,(f) as a function of the reduced field f. for several p
values

0 1 2 .3 4 5 3

3

Fig. 3. 7,(f) as a function of the reduced field B, for several p
values



from an initial state n to a final state n’ can be described
by [1]

P(o, E, G)=% Re Y <ald|a’y<h'|d]b>

aba'b’

Lalla|lio—i(H,—H,)]=®,, ] '|b)|b". (14)

where @,,. is the operator of impact electron broadening
for the n— n’ transition, and ab and &'b’ numerate the
Stark sublevels of the initial and final state, respectively.

In order to proceed with the calculation, we intro-
duce (similarly as in [7, 10, 21]) the simplifying approxi-
mation

[d*GW(E. G)P(w, E, G)=W(E) P(w. E. {G)y), (15)

which is exact to linear order in (G)g [10]. Making
use of the tracelessness and the symmetry of tensors E;;
and Q;;. in the coordinate system xyz with Ef0z, the
term describing the emitter-ion quadrupole interaction
H, in the Hamiltonian (1) can be expressed in terms
of the mean field gradients

Hq = _% [2 Qxx+ sz) <Exx>E +(2Q:: + Qxx)<E::>E
+2Qx}'<Exy>E+2Qx:<E.\':>E+2Q)':<E)‘:>E]' (16)

Taking into account the axial symmetry of (E,;»g with
respect to the field vector E (see (A4)), after passing to
the coordinate system x'y'z’ with E|0z" the operator
H, is proportional to the Q.... tensor component. Thus.
in this approximation the Hamiltonian in (14), in the

dimensionless field scale, is given by

5 eo E
H=Hy+eoEypz——> coko 2
oteoEqpz (327)2 2R, B,(p)(3 '), (17)

whereby the line shape function (13) reduces to the ordi-
nary form [1]

P(w)= [ dBW,(B) P, ) (18)
0

Calculations of P(w) haved been performed exact to
terms of the order of (a,/R,)* (a, — the Bohr radius).
ie. the dipole terms, the multi-ion-emitter-quadrupole
interaction and the quadratic Stark effect have been
taken into account. The matrix elements in (14) of the
operators d, H, and @,,,. for the dipole terms have been
taken as in [1], for the quadrupole terms (for replacing
Bo(B) by B,(f)) as in [7, see also 6 and 9] and for the
quadratic Stark effect as in [9]. In the frame of this
accuracy, it is sufficient to use only the off-diagonal di-
pole matrix elements for the operator @,.. For the nu-
merical calculations the values of W,(f) have been taken
from [17].

As is well known, the relationship between the line
profile P(4w) and the line intensity I(4w) are related
by

H{Aw)=1(0y)(1 +Adw/wy)*exp(—hAw/kgT)P(Aw), (19)

S

where o is the angular frequency of the unperturbed
line. and A denotes the frequency distance, 4w =w
— . The factor in front of P(4w) contributes an addi-
tional asymmetry, the so-called trivial asymmetry. which
has to be taken into account in comparisons with mea-
sured line asymmetries.

4. Comparison with measurements of H; line
and conclusions

The Hj line has three characteristic points: the blue and
red peaks and the central dip. According to the formal-
ism described above, the intensities I and the wave-
lengths 2 of these points and the asymmetry parameters

(20a)
(20b)

SI=(I,—1Ig) 1,
Sip_ p=ig+ig)2—7p

have been calculated. The calculated values are com-
pared with numerous measurements [9, 22-30] in Figs. 4
and 5. which show that agreement between theory and

o

Fig. 4. Comparison of the measured asymmetry of the H, peaks
(data points) with the result of present calculations (solid line).
The measured values are taken from [9] (D). [22] (v). [23] (m).
[24] (+). [25] (x). [26] (...). [27] (). [28] (0). [29] (a). [30]
(®)

200

o
O

N
@]

N 20
V) £V

Ne (102m)

Fig. 5. Comparison of the measured (shaded area [12]) shifts 6 4,
of the H, peaks with the present calculations (solid line)



measurements is good. This was an encouragement for
calculating the whole profile P(4w). However, due to
the long duration of such numerical calculations, de-
tailed computations have been carried out only for one
case: n,=10""cm ™3 and T=13000 K. These values of
n. and T were selected to compare the theory with the
theoretical data from [4]. From the experimental data
of earlier work [9] (hydrogen-argon arc-plasma), the H,
line profile averaged over 6 measurements and corre-
sponding to the physical conditions nearest to those
above, ie. n,=9.9x 10 cm ™3 and T=12900 K. was se-
lected for comparison with the calculations. Because hy-
drogen line profiles in the scale x=4//E, depend very
weakly on n, and T'(cf. [1]), the theoretical profile was
reduced to the experimental conditions using the proper
values of E,. The quantity A4/ is Ai=—Awi/(2nc)
with /, as the wavelength of the unperturbed line. The
scale A/ is proportional to 4w and does not cause any
“artificial” asymmetry of the profile in a result of the
transition from w to /.

In the present study the shift 4/,,, resulting from
interactions of the emitter with free electrons, has been

P (a.u)

ne=9.9¥101scm_3

T=12300K

-20 -10 o 10 20 ax A
Fig. 6. Comparison of the central part of the measured (dashed
line [9]) H; line profile with the present calculations (solid line)
vs. the wavelength distance A/ from the unperturbed wavelength
/0. The red shift is 4 ,,=1.30 A

omitted in P(4w). However, as discussed in paper [12],
the assumption 4/,=const. seems to be well satisfied
in the whole line profile. Thus, in order to compare the
calculated line profile with the experimental one, the the-
oretical profile should be shifted by A/, (or the mea-
sured profil should be shifted by — 4 /,,)). Figure 6 shows
the best fit of the experimental and theoretical profiles
with 4/, as the free parameter of the fitting procedure.
In the case examined we obtained 4/,,=1.30 A. The rea-
son of the discrepancy in the central part of the profile
is the omission of ion dynamic effects in the calculations.
In order to free of our analysis concerning the asymmetry
from these effects, the differences 4 P between blue and
red profile wings A P=Fy(—A4/')— B(A4 /), are compared
for theoretical and measured data in Fig. 7. For that
analysis the scale 4/'=4/,—A4/, is used. As seen in
Fig. 7. a good agreement was achieved, except around
the maximum of AP, i.e. in the region of the half width
of the line profile. (In that region the efficiency of the
ion-quadrupole interaction is greatest.) The observed
discrepancy can result from uncertainties of the measure-
ments and from a corresponding uncertainty of the 4/,
value. Generally, however, the analysis shows that the
formalism presented in this paper describes the asym-
metry Hy produced by ion interactions rather well. For
a decisive rating, further comparisons with measure-
ments are needed also for other H-lines.

The quantity 4/, has been evaluated also in other
selected regions of the H, line on the basis of the relation-
ship A/, =438 — A%, The obtained results are gath-
ered in Table 2. The symbols used have the following
meaning: the experimental line center (ELC) is defined
[31] as the arithmetic mean of the shift at 1/2, 1/4, and
1/8 of the average height P, =(F+ F)/2. whereas the
dip shift is defined [11] by é/=/4,—/,, and the peaks
shift by (20b). In all cases the obtained values A4/, are
practically the same, which confirms the assumption that
A/ =const. in the whole line profile. There are, how-
ever. about 30 percent discrepancy with the theoretical
predictions of the numerical value of this quantity. It
should be noted, furthermore, that the ion contribution
to the ELC shift is about threefold greater than recom-
mended theoretically [3, 4]. Therefore it seems to be ap-
propriate to re-evaluate also ion-produced blue shifts,

1.4 -
T~ -
- Hp / N n_=9.9%10'%cm ™3 |
—_ / \ e
3 / AN T=12900K
S 4.0} / \ -
g ’ / N
S / \
- / —~
/ AN
0.8F \\\ .
7 \\\
L // A i
// s
o.2r // Fig. 7. Comparison of the measured difference
1P between blue and red profile wings (dashed
o 10 20 line) with the present calculations (solid line).

vs. relative wavelength A/



Table 2. Comparison of measured and calculated wavelength shifts
of H, for different parts of the line profile at a nominal electron
density of 10’7 cm 3. The measured total shift A/f;‘,';‘l is the sum
of the ionic shift 4 4, and of the electronic shift 4/,

Shift (A)
oAl Ref 5k 0 /ey Ref
0.70 31 1.41
ELC om0 3 -7 1.53
. 1.50 11 1.43
dip 133 12 0.07 1.26
peaks 0.95 12 —0.42 1.37
total profile fiting 1.31
average 1.385
. 1.025 4
theoretical 1.759 8

e.g. in the line profiles of singly ionized helium [33].
This will be the subject of a forthcoming paper.
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Appendix A

The Fourier transform F(k, 6) given by (5) is expressed
by the functions h,(k, ) resulting from application of
the cluster expansion method [19, 20]. The general ex-
pression for a function of p-th order is

hp(kia):_[(pl(pz"'(ppgp(R]’RZS"'5Rp)

-d*R,dR, ...d*R (A.la)
with
¢,=explik-E,+6-G,)]—1, (A.1b)

where g, is the p-body correlation function depending
on the configuration of p ions located at R;, R,, ..., R,.
The functions h(k) resulting from (A.1) and (6) can be
written as follows:

— one-body functions

B =[g\(Ry)[exp(ik-E,)—1]d*R, (A.22)

and

h(11.)j=ij.g1(R1)G1.jexp(ik'E1)d3Rl; (A.2b)

— two-body functions

h(zo)zjgz(Rn R)[exp(ik-E;)—1]
[exp(ik-E,)—1]d?*R,d*R, (A3a)

and

hyi=i[g:(R,, R,){G, jexp(ik-E,)[exp(ik-E;)—1]
+ G, ;jexp(ik-Ey)[exp(ik-E,)—1]} d*R,d*R,. (A3Db)

7

Here, E, and G, ; are the field and field gradient corre-
sponding to a single ion at R,. In spherical coordinates
R, Og. ¢r. one can write these quantities as follows:

E,=—E(R,)R,R,.
Gaz.j: _G(Rz)Aj(@Rﬂ (pR)s

(Ada)
(A.4Db)

where E(R,) and G(R,) are the radial contributions to
the field and to the field gradients as described by (2)
and (3b). whereas the five independent components of
the gradients depend on the angles as follows:

(

i (ug)cos2@r— P (ug):
11)7(2"#12)51“2@12
A z = (1)(.“R)COS¢R Ay:: _PZ(“

=

A:: = 2P2(,UR))

=1p
—Z

AX

(1g) Sin@g:
(Adc)

B™(u) is the Associated Legendre Function, P(u) the
Legendre function, and ug=cos@g. The functions h{"
and hY’ given by (A.2a) and (A.3a) have been recalculat-
ed applying spherical harmonics development as in
papers [19. 20], using the same correlation functions
g; and g,. In a neutral point (for a H-atom) we have

g=1
and
g;=—(47D?n,) 'R, —R,| 'exp(— |/ 2|R, —R,|/D),

An analogous calculational technique has been used for
h{'; and hY'. starting from (A.2b) and (A.3b). Then, the
contrlbutlons of one-body and two-body clusters in (9),
using the auxiliary functions ¥(v), are:

nhtl» 7,\‘3 2 |}11(0>(l.)’
%11111‘20’—x3 2O p),
.5 E
nhi'=—i 32012 R¥O P (1) A0, @)
P .5 E
b= i gy g (04,04 04) (A.5)
0

where the angles ©, and ¢, define the direction of k
vector in the coordinate system x yz.

For an isothermal singly ionized plasma (n=n,), the
functions ¥* and ¥, are the same as in papers [19.
20]. For the functions %" and ¥'® we have derived
the expressions

WO=6 [ 137 y)is(edy,, (A.6a)
0
B=12) 20 | e [ ddysen)
y1=0 y2=0
-[1‘2(51)Z(—I)I(ZI-H){%[I(I—I 2 —1]j,(ey)
1=0 .
+3e; Ve ()] il 52)]’1 (uy) fr<(us), (A.6b)
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Fig. 8. The one-body function %" and the two-body function wt
at a neutral point for the case of singly charged perturbers vs.
the quantity v

where j,(¢) is the Spherical Bessel Function of order I.
and f;>(u) and f,<(u), defined according to [20]. are
given by

() =(— 1)l (i)(e—)
udu u

and

fi<@)=i""j(iuy=u' (i)’(sinh u).

udu u

The new variables used in (A.6) are defined as follows:

(k=k]),

v=x'"%p with x=kE,
and

e(v. V)=kE(R)=y *(1+vy)exp(—uvy),
(v, y)=eq ' (vD)*G(R)

=y [ +vy+(y)?/3]exp(—vy).
with

v=(keo) '*R

and

u——-VELTy.

The functions ¥ (v) have been calculated numerically
in the whole variability region of v, in contrast to [20].
where the asymptotic approximation at vx0 was used.
The recalculated results for the functions ¥ and ¥4

obtained here are in good agreement with the graphical
ones from [20]. The functions %! and ¥’ are shown
in Fig. 8. At v =0 these functions reduce to Holtsmark’s
approximation. attaining the values ¥{"’ =1 and ¥;"'=0.
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