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Abstract—An analysis of the accuracy of numerical methods and physical models, applied in
computer simulations of hydrogen line profiles, formed in plasmas, has been carried out. An
electric microfield model has been proposed, reproducing the real microfields not worse than
other hitherto existing models. The use of our model allows shortening the calculation time
for a profile by a factor of three. The numerical code developed for this purpose allows one
to control the accuracy of the simulation procedure. We present line profile results for Ly,,
Lys and Ly,, which have been calculated with an accuracy being not worse than 3%. The
results have been compared with other theoretical and experimental data. Copyright © 1996
Elsevier Science Lid

INTRODUCTION

Study of Stark profiles of spectral lines of hydrogen and of hydrogenic ions is one of the basic
problems in plasma spectroscopy. The great interest arises, e.g., from the possibility of using the
half-width of a line, A4,,, for a simple and precise determination of the electron density, N, in
plasmas. Thus, the knowledge about the dependence of A4, on plasma parameters 7, N, and the
accuracy of theoretical calculations is very important for experimenters. Currently the comprehen-
sive tables of hydrogen Stark profiles'? are used for establishing the relation between A4, and the
plasma parameters. The basic reason for the discrepancy between the calculated™? and the
measured®*® values of A4,,, is the negligence of ion motion in the calculations. In plasmas of
moderate densities (N, > 10" cm ), in the case of Balmer lines this discrepancy is of the order of
several per cent;*’ in the case of Lyman lines, however, the discrepancy is considerably greater. For
example, in Refs. 6 and 8 it is shown that the measured values of A4,, for Ly, in a H + Ar plasma
are 2.5 times greater than the calculated ones.'? In all calculational models, in which the time
variability of the ionic field is taken into account, this discrepancy diminishes drastically.'®* To
date the best agreement between the calculated and measured data has been achieved (i) within
the Model Microfield Method (MMM) approximation,'? and (ii) applying computer simulation
methods. '+

The construction of our numerical code is based mainly on experiences of computer simulations
described in Refs. 16 and 18. Results computed in Ref. 17 differ essentially from measured results
Ref. 6 (e.g., for Ly, about 37%), because of adiabatic attributes of the theory. We therefore do
not analyse Ref. 17 in our paper. In Refs. 14-16 the electric field arising only from ions has been
simulated, whereas the electronic contribution to the line broadening has been described within the
impact approximation. In Ref. 18 this approach has been generalized, i.e., the field resulting from
ions as well as from electrons has been simulated. In this manner the development operator could
also be taken into account quite generally and the assumption on the binarity of collisions has not
been used. However, such generalization causes multiple extension of the computer calculation
time. Therefore, in the case where conditions of the impact approximation are satisfied, one can
recommend the approach of Ref. 16 as being useful too.
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Within the computer simulation techniques, usually about 100 perturbers only are taken into
account and the results are averaged over a finite number of perturber configurations N, (usually
about 1000). Such unavoidable limitations of the ‘“‘computer experiments” introduce some
uncertainties in the output results. The present paper, being a continuation of paper,'® is devoted
to the analysis of these kinds of errors and to an attempt of optimizing the calculation time. At
the present stage of the study, the calculations have been restricted to the first lines of the Lyman
series, where the ion dynamic effects are spectroscopically the most effective, and the calculation
time is the shortest. The calculations have been carried out applying the IBM PC 486 computer.
The results obtained for Ly,, formed in an isothermic (7, = T;) H + Ar plasma at electron density
N, = 10" cm~> and temperature T = 10 kK, have been discussed in detail and compared with those
reported by other authors.

DISCUSSION OF THE SIMULATION TECHNIQUES

Three simulation technique procedures have been programmed, two of them according to those
used in Refs. 16 and 18 and one containing our modifications. Calculations have been executed
applying all three simulation techniques, the results are compared and some specific problems are
discussed below.

In Refs. 16 and 18 the basic assumptions of the computer simulation techniques are similar.
However, they differ in (i) defining the initial positions of perturbers in the simulated plasma
volume, and (ii) substituting the escaping particle from the plasma volume by a “new” particle.
The substitution technique applied in Ref. 16 for ions, leads, in the case of electrons, to a plasma
cooling and to a particle drift towards the surface of the sphere. In order to avoid these nonphysical
effects, in the present paper a suitable correction in the substitution technique'® is introduced. This
correction secures that a particle entering into the sphere has the same velocity value as the escaping
one but an accidental spatial orientation. The corrected simulation technique (henceforth called
as Ref. 16 corr.) becomes free from these nonphysical effects, and yields results reproducing those
obtained applying the simulation technique.'®

In both the simulation techniques'®'® the initial values of the ionic electrical field are in agreement
with the probability density W,(B), taken from Ref. 22. After a time interval greater than the
duration of a single (mean) ionic collision, the plasma completely looses the information on ionic
correlations, introduced through the filtering procedure. Thus, the Hoopet’s probability density
becomes similar to the probability density W,(f), resulting from the Independent Particle Model
(IPM). The information loss causes the small deviation of the ratio of the simulated distribution
functions H,(f#) from unity, when the “aging” of the plasma becomes greater than the duration
of one (mean) ionic collision. For a simulation sphere of radius Rg>» D, the mean value of the
electric field (B) slightly increases (by about 2-3%) in comparison with the mean value of the
field-strength at the initial moment.

In Ref. 18 the authors have noted, that the simulated function of probability density of a collision
within the parameter ranges: time interval between 0 and ¢;, impact parameter between p and
p +dp, in the limit 1,— oo tends to the expected theoretical value of 2nNwvyt,pdp, where
vo = (8kT/mu)"? is the mean thermal velocity. The analysis of Fig. 3 in Ref. 18 suggests that between
the simulated distribution and the theoretical one (the last applied to an infinite plasma volume)
at a finite interval #,a discrepancy occurs. In our opinion this discrepancy arises from the difference
in the applied definitions of collision. We have accepted the rigorous routine concept: within a time
interval (0, ¢,) a collision takes place if the perturber attains the minimum distance R;(r) = p, within
this time interval, in contrast to Ref. 18 where the condition R;(r) < Ry is assumed arbitrarily.
Within the rigorous concept a very good agreement between the simulated and the calculated
distributions is obtained.

Concluding, we note that in a wide range of parameters: N,, T, and N, we do not find any
substantial differences between results of both simulation techniques under examination, i.e., Refs.
16 corr. and 18, except at small number of configurations and at small number of particles in the
sphere, where fluctuations within the technique® are, slightly smaller. Both the simulation
techniques give statistical distributions stable in time, agreeing well (with a certain reservation with
respect to W,(f)) with the theoretical distributions assumed at the initial moment.
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MODIFICATION OF THE ELECTRICAL MICROFIELD MODEL

In the present work, similarly as in Refs. 16 and 18, the perturbers are considered as classical
particles following straight paths. In real plasmas, as a result of collisions between emitters and
perturbers, scattering processes occur. In order to take this scattering into account on one hand,
and in order to avoid the discontinuity when solving the Schrédinger equation on the other, we
assume that in the vicinity of the emitter an inaccessible sphere for classical particles exists, of a
radius R, = 3/2n’a,, where n is the principal quantum number of the initial (upper) level, and a,
is the Bohr radius. We also assume, that the perturbers are reflected at this inner sphere according
to the reflection law, with conservation of the collision parameter.

The statistical fluctuations of the simulated distribution functions decrease with increasing
number of particles in the model; simultaneously the calculation time increases substantially. This
is intuitively clear. However, it has to be noted, that the decrease of the number of configurations
causes an increase of statistical uncertainty of the final results, whereas the decrease of the number
of particles in the model causes a trend of these results. Our results suggest that the optimum size
of the simulation sphere is about R = 3D. [The Debye radius D is a “good unit” for the simulation
sphere Rg. If the simulation sphere Rg is expressed in Debye units the number of particles and the
simulated distribution functions W,(f) depend only on the screening parameter r, analogous as
for distribution at infinite volumes of the plasma. In previous papers'®!® the number of perturbers
was used in order to determine the volume of simulated plasma.] It should be noted, however, that
even in the case, when the radius of the simulation sphere is limited to 3D, the number of perturbers
may be large. For example, for a plasma with N, = 10'"*em %, T = 10 kK, the total number of ions
and electrons in the simulation sphere is equal to N = 750. In Ref. 18 the number of perturbers
in the simulated sphere, at the same physical conditions, was N = 80, which corresponds to
Rg =~ 1.43D. Such a great limitation of the simulation sphere may considerably affect the resulting
spectral line shape.

An additional comment is needed about the assumption concerning the electronic field, accepted
in Refs. 12 and 18. In these papers it is assumed, that the electric field of free electrons in plasma
can—similarly as that of ions—be screened (Debye—Hiickel field). In our opinion a more realistic
description of the microfield is given by the high-frequency component, calculated assuming
Coulomb interactions and the electron—electron correlations.”* Hooper’s probability density,”
which takes into account also correlations of higher orders, yields electric fields only insignificantly
higher, compared with those simulated in the present paper. One can assume, that this small
difference defines the upper limit of the discrepancy, since the real contribution from very slow
electrons (v, « {v,») to the resulting electric field is slightly smaller than the field calculated in
Ref. 25, because of screening of slow electrons by ions. Within the computer simulation techniques,
the concept of cut-off of the Coulomb potential is very profitable, resulting in the limitation of the
number of perturbers which have to be considered.

The ion-dynamic effects are less important, when the impact parameter p increases. The resulting
microfield, produced by perturbers of impact parameters satisfying the condition p > D, is almost
constant in time. In order to shorten the calculation time—on one hand. and to take into account
interactions of all perturbers adequately—on the other, we propose: (i) to restrict the simulated
plasma volume to a space defined by two spheres—the outside one with a radius Rg = 3D and the
inside sphere with a radius R, = 3/2n%a,, (ii) to assume the screened field being dependent on time
for ions with p < D, while for the remaining ions being also screened, but constant in time F(0).
We have tested this concept in a wide range of physical conditions and we found a good
reproduction of the resulting ionic field. Our proposed model can therefore be regarded as a good
fitting procedure for the electric field in plasmas. In order to take into account, at least
approximately, the correlation effects of free electrons in plasma, we propose (iii) to use the cutted
Coulomb field for p > D. Finally we propose to describe the resulting field-strength at the position
of a given emitter, as follows:

F(1)=F, (1) +F.(2), (1)
where

F(1)=F,(t),<p + Fi(0),. p, as the Debye field,
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and
F.(t1)=F.(1),<p+0,.,, as the Coulomb field,

where the perturbers-emitter distances are R, < R(t) <3D.

LINE PROFILE APPROXIMATION

In order to describe the hydrogen line profile formed by emitter—plasma interactions, we have
accepted the conventional assumptions similarly as in Ref. 18. Then, the relation between the
spectral line profile and the average of the atomic dipole autocorrelation function C(t), may be
written

I(w) = lim n‘l.@eJIIC(t)e’Aw’ ds, )
C(t) = Tr {dab‘ U;'-[,'(t)db'a’ Uu‘a(t)}av’ (3)

where d is the dipole operator for the hydrogen atom, aa’ and bb’ indicate the sublevels of the
initial (E,) and final (E,) states of the unperturbed atom, respectively. The relative frequency is
given by Aw = w — (E, — E,)/h, whereas U(¢) is the time development operator for the hydrogen
atom in the presence of the electric field produced by electrons and ions. The average, {},,, is taken
over all initial field strengths and possible time histories.

In previous papers,'“'% in which only the ion field has been simulated, the line profiles were
calculated assuming, that the emitter—electron collisions satisfy the criteria of the impact approxi-
mation. The electron-evolution-operators can be then replaced by the impact operator @ (cf.
Ref. 1). Thus the autocorrelation function for Lyman lines can be written as follows:

C(t) = Trld, dyy {Ui(t)ra }ar): 4
where the ionic evolution operator U, satisfy the following Schrdédinger equation:
U (1) = [H + V,(t) — h®|U, (1), (%)

where H is the Hamiltonian for the unperturbed hydrogen atom. The subscript i corresponds to
ions, whereas the subscript e corresponds to electrons.

Additionally, under the simplifying assumption that the emitter—plasma interaction may be
approximated by statistically independent interactions (unperturbed emitter-ions and unperturbed
emitter-electrons), the autocorrelation function for Lyman lines is the same as in Ref. 16b:

C(t) =Tr [dab : db‘a' (exp( - (Dt))a'a” { I/Vi(t)a”a }av]a (6)
where the evolution operator W;(t) for ions satisfy the Schrodinger equation:
mW, (1) =[H + Vi(O)IW (1), (7

The principal aim of the paper is to carry out an analysis of the accuracy of the line profile
calculations within the approximation given by Eq. (3)—the same as used in Ref. 18. In order to
compare our results and to examine the introduced simplifications mentioned above, we have
performed also calculations within the approximations given by Eqs. (4) and (6), which have been
used, e.g., in Refs. 10, 11, 14-16. The operator @ has been taken in the same form as in Ref. 1.

ESTIMATION OF THE ACCURACY OF NUMERICAL CALCULATIONS

The matrix elements of the evolution operator U(r) have been obtained by solving the
Schradinger equation and using Fehlberg’s numerical procedure. All standard deviations, presented
in this paper, have been calculated on the basis of 10 simulated line profiles, each calculated for
a new sample of initial perturber configurations, and each consisting of N, configurations. As an
example, a set of 10 line profiles for Ly, is presented in Fig. 1. Figure 2 presents the calculated
FHWM versus the number of configurations. It is noteworthy, that the standard deviation of the
FWHM depends on the configuration number N, much stronger than the FWHM itself. We have
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Fig. 1. Simulated profiles of the Ly, line obtained applying 10 different sets of initial configurations of
perturbers (x4 = 0.976). In each set N, = 1100 configurations were considered.

accepted the following criteria for the choice of the N,—the standard deviation of the FWHM has
to be smaller than 3% for Ly,, and 2% for Ly, and Ly, (i.e., the precision attained in the best
available measurements). At these criteria the number of configurations within the approximation
given by Eq. (3) was usually greater than 1000. Within the approximation given by Egs. (4) and
(5), the standard deviation at the same number of configurations, usually equals 1.5%.

In our analysis of the accuracy of the simulated line profile, all uncertainty sources discussed
above have been taken into account. Additionally, we have also performed a test of the stability
of the Schrodinger equation solutions. For this purpose the line profiles for Ly, have been simulated
assuming the ions to be static. Within this approximation, requirements with respect to the time
interval (0, #;) are the most critical. In particular, deviations of the simulated profile in the line
center /(0) from zero, are sensitive measures of the accuracy of calculation. In the static case,
N, = 10* ionic configurations have been taken into account for averaging in order to minimize the
inaccuracies introduced by the simulated probability density W,(f). We found a very good
agreement between the simulated and the theoretical line profiles for all three Ly lines «, § and
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Fig. 2. The FWHM of simulated profiles as a function of the number of perturber configurations taken
for averaging.
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Fig. 3. Comparison of the simulated Lyy line profile with a theoretical profile, both formed by static ions
only.

7. As an example, in Fig. 3 the results for Ly, are shown. Thus we can conclude that Fehlberg’s
procedure used to solve the Schrédinger equation, as well as all numerical codes used, are correct.

ANALYSIS OF SOME MODEL ASSUMPTIONS

Besides the analysis of sources of uncertainties, arising from applied numerical methods, some
tests concerning the model assumptions were accomplished. We have tested how the FWHM of
the simulated profiles depends on: (i) the dimension of the simulation sphere Rq, (ii) the dimension
of the inner sphere R, (the “size” of the emitter), (iii) the model of the electric field produced
by electrons, (iv) simplifications used in formulas describing the autocorrelation function of the line
profiles [Egs. (4) and (6)] and (v) the effect of plasma cooling.

Within the static approximation for ions, only the interaction emitter-electrons depend on the
quantity R; and may influence the FWHM of the simulated profile. In order to estimate this
influence, simulations at various Ry values in the range from D to 9D were performed, for all three
models of the electronic electric field discussed earlier: the Coulomb-type, the cutted Coulomb-type
and the Debye-type. The results for Ly, are presented in Fig. 4(a). For comparison results obtained
by other authors are also shown in this figure. It has to be stressed, that in each case, the FWHM
increases with increasing radius of the simulation sphere. In the case when the radius is reduced
to Ry = D, the underestimation of FWHM reaches almost 40% for the Coulomb-type interaction
(for electrons) and about 20% for the cutted Coulomb-type interaction, if compared with results
for R; — oo. For the second model, recommended by us, at Ry~ 3D, a “stabilization” of FWHM
is observed, supporting our previous suggestion that R; = 3D is an optimal value of the radius of
the simulation sphere. The results presented in Fig. 4(a) support also the conclusion, that the
interaction model of Coulomb-type for electrons leads to an upper limit, while the Debye-type to
a lower limit for the FWHM. These results show also, that even in the case of Coulomb-type
interactions (the case of slowest decrease of the interaction with increasing distance), the asymptotic
approach R — oo does not lead to the logarithmic divergence arising in binary approximations.’?'?

A similar analysis was performed for the case of dynamical ions. The results are presented in
Fig. 4(b). In simulations performed according to Eqs. (4) or (6), the contribution from electrons
is described by the operator ®, which does not depend on the size of the simulation sphere.
Therefore, within these approximations, the dependence of the FWHM on R reflects the “ionic”
sensitivity on the size of the simulation sphere. In this case for Ry = D, the overestimation of the
FWHM amounts to 13% compared with the FWHM obtained at Rg— oo. Fortunately, if both
ions and electrons are simulated simultaneously [Eq. (3)] these opposite tendencies for ions and
electrons lead to a partial cancellation. Therefore, even for Ry = D, the resulting overestimation
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Fig. 4. (a) The FWHM as a function of the dimensionless parameter D/Rg, where D is the Debye length
and Rq is the simulation sphere radius. Results obtained within the quasistatic-approximation. The
symbols correspond to following references: (A) calculated according to Ref. la (Impact Th.); ((J) Ref.
2 (Unified Th., without TO); (O) Ref. 12a (MMM); ([1) Ref. 13 (Unified Th. with TO); ({) Ref. 17d
(Relaxation Th.) (x) Ref. 18b (simulation); (A) Ref. 21 (Quant.-Mech. Many-Body Th.); this paper
[approximation Eq. (3)] with the following potentials: ( % ) Coulomb-like; (@) Coulomb cut-off-like; (+)
Debye-like. The lines represent the best fits to our results. (b) Simulation results obtained with the inclusion
of ion dynamics. Notations: (@), (+) and (x) are the same as in (a). The symbols (A) represent our
results calculated according to Ref. 16b corr.. (Results obtained in Refs. 11, 12b, 13 and 17d amount
approx. 0.11 A)

of the FWHM does not exceed 5%. Similar behaviour of the dependencies has been found for Ly,
and Ly, as shown in Figs. 4(a) and 4(b) for Ly,. Moreover, it has been found, that at fixed N, and 7,
with increasing line number in a series, the dependencies become weaker.

A similar analysis has been performed in order to estimate how the calculated line width depends
on the assumed radius of the inner sphere, which is inaccessible for classical perturbers. For Ry
values from the interval corresponding to that from Figs. 4(a) and (b), at fixed R, within the range
of 0-50a,, simulations have been performed and FWHM have been evaluated. In this manner the
relation FWHM = f(R,,;,) at R — o0 has been obtained. In order to compare our results with those
of Ref. 18 and with other theoretical data, simulations have been accomplished applying a
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Fig. 5. (a) The FWHM as a function of the cut-off parameter R, [(@) and (—) representing the best

fit] and pp, [(3k) and (- -) representing the best fit] in Bohr length units. Other denotations are the same

as in Fig. 4(a). Results obtained within the quasistatic-approximation. (b} Simulation results obtained with

the inclusion of ion dynamics. The denotations are the same as in Fig. 5(a). The symbol ( x) represents
the result of Ref. 18b.

traditional procedure limiting the strong collisions, i.e., by introducing the relation p > p,,, for the
collision parameter. The resulting FWHM for the Ly, line as a function of R, or pyy, is shown
for static ions [Fig. 5(a)] and for dynamic ions [Fig. 5(b)]. Results obtained by other authors are
also shown in these figures. In the case of the relaxation theory, e.g., 17(d) or MMM 12(a), we
have assumed p,,;, = 0. In both these theories, the problem of minimizing the collision parameter
does not appear. However, similarly as in the case of simulations, the necessity of limitation of the
interaction energy arises, because of pure formal reasons (mathematical solution) as well as because
of a physical reason (ionization). In Ref. 18 for all lines and all physical conditions p,;, = 9a, has
been assumed. In the case of the “unified” theory*' the relation p,;, = 3/2na, + A/2n )where 4 is
the de Broglie wavelength for electrons with a mean thermal velocity) is used, which leads to
Pmin = 9.5 A for the physical conditions under consideration. In the case of the impact theory' the
relation p;, = (n} —n})A/2n is used, which leads to a value of about 10.5 A. In the case of the
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Fig. 6. Comparison of simulated Ly, profiles with the inclusion of the ion-dynamic effect obtained applying
three different profile approximations: Eq. (3) (—); Eq. (4) (- --) line and Eq. (6) (--*).

quantum mechanical many-body theory’ a value of R,,, = 7.6a, based on the value of the limiting
momentum?' is evaluated. The last value is very close to the value of R,,;, = 6a,, recommended by
us. It is noteworthy to stress, that for a radius of about 6a,, the simulated FWHM becomes almost
stable [see Fig. 5(a)], which makes the choice of the minimal collision radius R, much less critical.
As expected, for R, — 0 or within the alternative approximation for p,;, — 0, the extrapolated
FWHM are the same [see Figs. 5(a) and (b)]. This fact may be considered as a test of good quality
of the obtained results.

For a fixed line, all three analysed approximations [Eqgs. (3), (4) and (6)] lead to similar values
of the FWHM. However, the differences reveal a systematical character. For all physical
conditions, the approximation given by Eq. (4) always leads to the smallest FWHM, while the
approximation [Eq. (6)] to the largest FWHM. The relative differences of these small discrepancies
decrease with increasing line number in the series. These discrepancies are shown in Figs. 6 and 7
for Ly, and Ly,, respectively.

We have estimated that the error caused by the “nonphysical” ion cooling introduced by the
simulation technique,'® does not exceed 0.5% of the FWHM, i.e., it is not essential. Similar cooling
for electrons would cause an increase of the FWHM by about 10%.
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Fig. 7. The central part of the simulated Ly, Stark profiles for different profile approximations. The points
represent the results of experiment.® Other designations as in Fig. 6.
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Table 1. Comparison of the FWHM of Ly, line obtained
experimentally (Ref. 6a) and calculated in this work
(including Doppler broadening).

T(kK) N, (10" cm™3) AX2(R)
expt. 6a  this cal. + < 3%
12.7 1 0.23 +£0.02 0.221
13.2 2 0.30 £ 0.02 0.287
132 3 0.36 + 0.02 0.358
14.0 4 0.42 + 0.02 0.426

Widths due to Stark and Doppler broadening.

COMPARISON WITH OTHER RESULTS AND CONCLUSIONS

We have calculated the profiles of Ly,, Ly, and Ly, according to Eq. (3) for the physical
conditions of experiments.®® The evaluated profiles have been convoluted with the corresponding
Doppler profiles. In Table 1 our FWHM for Ly, are compared with measured ones. The good
agreement between the simulated and the measured dip-values, is shown in Figs. 7 and 8. The
standard deviation of the simulated dip value amounts 10%, although for the FWHM it does not
exceed 2%. The FWHM obtained for Ly, amounts 1.81 1+ 0.04 A, while in the experiment® a
FWHM of 1.8 A has been measured. For all three Ly lines «, §, and y, a very good agreement
between our results and measured values is achieved. Our values of FWHM for Lyman lines «,
B, y do not differ from those published in Ref. 18b by more than + 5%. The analysis of the influence
of N, T, and p on the FWHM and the dip value allows to conclude that our dependencies are
more “regular” than those obtained from results quoted in Ref. 18b. In Figs. 8 and 9 examples
of these dependencies are shown.

We have also compared the same experimental results®® with profiles obtained in the frame of
the approximation given by Eq. (4) (as calculated in Ref. 16a) with the plasma field model [Eq. (1)].
Also in this case we found a satisfactory agreement between calculations and measurements. Only
in the case of the Ly, line, the calculated FWHM were systematically smaller by about 5%, while
for Ly, line the relative dip values were systematically larger by a factor of 1.25 than the
corresponding experimental values. In all other cases the calculated values of FWHM agree well
with the experimental ones within the uncertainties of both the calculations and measurements.

The FWHM of the profiles obtained according to Eq. (6) (as calculated in Ref. 16b) agree well
with the measured ones. However, because of large discrepancies in the central part of the Ly,
profile (see Fig. 7) we do not recommend this approximation.

O " T S S S U T | 1 U S S S | I U
1019 107° 107 N, (em™)

Fig. 8. The central dip value of the Ly, line as a function of electron density for a H 4+ Ar plasma compared
with other ion-dynamic results: (—) Ref. 16a; (- —-) Ref. 12b; (A) for T = 10kK and ([J) for T = 15kK,
both of Ref. 18b; (@) Ref. 8b (experimental data); (O) this paper for physical conditions of Ref. 8b.
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Fig. 9. The FWHM of the Ly, as a function of u~'?, where 4 is the reduced emitter-perturber mass.
Comparison of our simulation results (@) with data from Ref. 18b (A).

As a result of the performed analysis and comparison with experimental data we recommend
the approximation given by Eq. (3) [or in the case of need given by Eq. (4)] together with the model
of the electric microfield of the plasma described by Eq. (1). We have shown that the optimal
simulation sphere radius is Rg = 3D. The proposed microfield model leads to FWHM which would
be obtained at Ry— oo [see Figs. 4(a) and (b)]. Moreover, the use of this field model decreases the
evaluation time by nearly a factor of 3, as compared with the time required when all perturbers
are described by the Debye or Coloumb field. We have also shown, that in spite of the assumption
of the classical path for perturbers, the strong collisions (at p ~ 3/2n’a,) contribute only slightly
to the FWHM [see Figs. 5(a) and (b)).
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