dr hab.  Ryszard  Jan  Piasecki



Institute of Physics
University of Opole
ul. Oleska 48
PL 45-052 Opole

room 184 A
phone (077) 452 72 85
www.fizyka.uni.opole.pl/piaser
email: Ryszard.Piasecki@uni.opole.pl


    Research interests
  • Hybrid reconstruction of the structure of complex patterns by the use of the simulated annealing
  • Entropic descriptors and multiscale analysis of systems of finite size objects
  • Modelling microstructure/property relationships for random inhomogeneous materials
  • Evolution of complex systems via cellular automaton rules
    Cooperation
    (Prof. Angel Plastino)
    Departamento de Fisica,
    Universidad Nacional de La Plata,
    La Plata, Argentina

    Publications
  • R. Piasecki, W. Olchawa, D. Frączek, A. Bartecka,
    A Two-Stage Reconstruction of Microstructures with Arbitrarily Shaped Inclusions
    Materials 2020, 13, 2748, 10.3390/ma13122748
    [Special Issue Advances in Micromechanical Behavior of Materials]
    Issue Editor: Dr. Elena Ferretti
    arXiv:2004.02587v3 [cs.CE]
  • ArkadiuszNiemczyk, KatarzynaDziubek, KrystynaCzaja, Daniel Frączek, RyszardPiasecki, StanisławRabiej, MichałDutkiewicz,
    Study and Evaluation of Dispersion of Polyhedral OligomericSilsesquioxane and Silica Filler in Polypropylene Composites
    Polymer Composites 40, Issue 4,1354-1364 (2019), 10.1002/pc.24866
  • R. Piasecki, W. Olchawa, K. Smaga,
    Sensitivity to initial conditions in an extended activator-inhibitor model for the formation of patterns
    Acta Phys. Pol. B 49,961-979 (2018), 10.5506/APhysPolB.49.961
    arXiv:1804.06228v2 [ q-bio.CB ]
  • R. Piasecki, W. Olchawa, D. Frączek, R. Wiśniowski,
    Statistical Reconstruction of Microstructures Using Entropic Descriptors
    Transp Porous Med (2018) 125, 105-125 (2018), 10.1007/s11242-018-1012-7
    [Special Issue Reconstruction of Porous Media and Materials and Its Applications]
    Issue Editors: PejmanTahmasebi, Muhammad Sahimi
    arXiv:1708.01147v2 [cond-mat.mtrl-sci]
  • D. Frączek, R. Piasecki, W. Olchawa, R. Wiśniowski,
    Controlling spatial inhomogeneity in prototypical multiphase microstructures
    Acta Phys. Pol. B48, 1433-40 (2017)
    arXiv:1706.06880v3 [cond-mat.mtrl-sci]
  • W. Olchawa, R. Piasecki, R. Wiśniowski, D. Frączek,
    Low-cost approximate reconstructing of heterogeneous microstructures
    arXiv:1603.07529v3 [cond-mat.stat-mech]
    Comput. Mater. Sci. 123, 26-30 (2016)
  • D. Frączek, W. Olchawa, R. Piasecki, R. Wiśniowski,
    Entropic descriptor based reconstruction of three-dimensional porous microstructures using a single cross-section
    arXiv:1508.03857v2 [cond-mat.stat-mech]
  • R. Wiśniowski, W. Olchawa, D. Frączek, R. Piasecki,
    On multi-scale percolation behaviour of the effective conductivity for the lattice model with interacting particles
    Physica A, 444, 799-807 (2016)
    arXiv:1506.05156v1 [cond-mat.stat-mech]
  • W. Olchawa, R. Wiśniowski, D. Frączek, R. Piasecki,
    On multi-scale percolation behaviour of the effective conductivity for the lattice model
    Physica A, 424, 130-141 (2015)
    arXiv:1409.4611v2 [cond-mat.stat-mech]
  • W. Olchawa, R. Piasecki,
    Speeding up of microstructure reconstruction: II. Application to patterns of poly-dispersed islands
    Comput. Mater. Sci., 98, 390-398 (2015)
    arXiv:1406.0037v2 [cond-mat.stat-mech]
  • D. Frączek, R. Piasecki,
    Decomposable multiphase entropic descriptor
    Physica A 399, 75-81 (2014)
    arXiv:1309.1782v2 [cond-mat.stat-mech]
  • R. Piasecki, W. Olchawa,
    Speeding up of microstructure reconstruction: I. Application to labyrinth patterns
    Modelling Simul. Mater. Sci. Eng. 20, 055003 (2012)
    arXiv:1109.3819v3 [cond-mat.stat-mech]
  • R. Piasecki,
    Microstructure reconstruction using entropic descriptors
    Proc. R. Soc. A 467, 806-820 (2011)
    arXiv:0910.1955v5 [cond-mat.stat-mech]
  • R. Piasecki, A. Plastino,
    Entropic descriptor of a complex behaviour
    Physica A 389, 397-407 (2010)
    arXiv:0902.2106v2 [cond-mat.stat-mech]
  • R. Piasecki,
    Statistical mechanics characterization of spatio-compositional inhomogeneity
    Physica A 388, 4229-4240 (2009)
    arXiv:0903.4669v1 [cond-mat.stat-mech]
  • R. Piasecki,
    Versatile entropic measure of grey level inhomogeneity
    Physica A 388, 2403-2409 (2009)
    arXiv:0809.0463v2 [cond-mat.stat-mech]
  • R. Piasecki,
    A generalization of the inhomogeneity measure for point distributions to the case of finite size objects
    Physica A 387, 5333-5341 (2008)
    arXiv:cond-mat/0612401v3 [cond-mat.stat-mech]
  • R. Piasecki,
    Extended quasi-additivity of Tsallis entropies
    Physica A 366, 221-228 (2006)
    arXiv:cond-mat/0507051v4 [cond-mat.stat-mech]
  • R. Piasecki,
    Effective conductivity in a lattice model for binary disordered media with complex distributions of grain sizes
    physica status solidi (b) 236, 625-633 (2003)
    arXiv:cond-mat/0209092v3 [cond-mat.mtrl-sci]
  • R. Piasecki, M.T. Martin, A. Plastino,
    Inhomogeneity and complexity measures for spatial patterns
    Physica A 307, 157-171 (2002)
    arXiv:cond-mat/0107471v3 [cond-mat.stat-mech]
  • R. Piasecki, A. Plastino,
    Duality and spatial inhomogeneity
    Physica A 305/1-2, 113-118 (2002)
    arXiv:cond-mat/0107604v2 [cond-mat.stat-mech]
  • Z. Garncarek, T. Majcherczyk, D. Potoczna-Petru, R. Piasecki,
    Application of relative configurational entropy as a measure of spatial inhomogeneity to Co/C film evolving along the temperature
    Journal of Materials Science Letters 19, 1369-1371 (2000)
    arXiv:cond-mat/0101144v1 [cond-mat.mtrl-sci]
  • R. Piasecki,
    Detecting self-similarity in surface microstructures
    Surface Science 454-456, 1058-1062 (2000)
    arXiv:cond-mat/0008470v1 [cond-mat.stat-mech]
  • R. Piasecki, A. Czaiński,
    Coarsened Lattice Spatial Disorder in the Thermodynamic Limit
    physica status solidi (b) 217, R10-11 (2000)
    arXiv:cond-mat/0008334v1 [cond-mat.stat-mech]
  • R. Piasecki,
    Entropic measure of spatial disorder for systems of finite-sized objects
    Physica A 277/1-2, 157-173 (2000)
    arXiv:cond-mat/0008313v1 [cond-mat.stat-mech]
  • Z. Garncarek, R. Piasecki,
    What is a physical measure of spatial inhomogeneity comparable to the mathematical approach?
    European Physical Journal Applied Physics 5, 243-249 (1999)
    arXiv:cond-mat/0005447v1 [cond-mat.stat-mech]
  • R. Piasecki,
    Coarsened Lattice Model for Random Granular Systems
    physica status solidi (b) 209, 403-411 (1998)
    arXiv:cond-mat/0005386v2 [cond-mat.stat-mech]
  • Z. Garncarek, R. Piasecki, J. Borecki, A. Maj, M. Sudoł,
    Effective conductivity in association with model structure and spatial inhomogeneity of polymer/carbon composites
    Journal of Physics. D: Appl. Phys. 29, 1360-1366 (1996)
    arXiv:cond-mat/0204057v1 [cond-mat.mtrl-sci]
  • A. Czaiński, Z. Garncarek, R. Piasecki,
    Quantitative characterization of inhomogeneity in thin metallic films using Garncarek's method
    Journal of Physics D: Appl. Phys. 27, 616-622 (1994)
  • R. Piasecki, Z. Ziembik, W. Wacławek, M. Ząbkowska-Wacławek,
    Composition Dependence of the Thermopower in (CuPc)Sakap 6 Mixtures: Yoshida Model
    physica status solidi (a) 128, K109-112 (1991)
  • R. Piasecki, Z. Ziembik, W. Wacławek, M. Ząbkowska-Wacławek,
    Composition Dependence of the DC Conductivity in (CuPc)Sakap 6 Mixtures: Yoshida Model Application
    physica status solidi (a) 123, K145-148 (1991)
  • R. Piasecki, M. Ząbkowska-Wacławek, W. Wacławek,
    An Explanation of Electrical Conductivity Data for Copper Phthalocyanine-Acetylene Carbon Black Mixtures
    physica status solidi (a) 108, 331-335 (1988)
  • R. Piasecki,
    On the Possibility of First-Order Transitions in the Generalized Blume-Capel Model
    physica status solidi (b) 141, K57-59 (1987)
  • R. Piasecki,
    Phase Diagrams of a Layered Magnet with Coupled Order Parameters
    physica status solidi (b) 120, K215-218 (1983)
  • R. Piasecki,
    Generalized Model of an Anisotropic Ferromagnet with Two Spins per site. Magnetic Excitations
    physica status solidi (b) 108, K41-45 (1981)
  • R. Piasecki,
    Anisotropic Ferromagnet with Two Spins per Site
    physica status solidi (b) 103, 547-557 (1981)

    Miscellanea
  • R. Piasecki,
    Density of electron states in a rectangular lattice under uniaxial stress
    arXiv:0804.1037v2 [cond-mat.str-el]
  • R. Piasecki,
    DIAGRAMY FAZOWE UKŁADU Z DWOMA PARAMETRAMI PORZĄDKU
    Zeszyty Naukowe WSP w Opolu, Chemia VIII, 109-120 (1987)